Cell Line Development With Intelligent Tools, Services, and Solutions for Your Unique Needs

A Single-Vendor Approach

When it comes to the commercialization of a biological product, effective, high-quality cell line development is essential for your success. It requires a partner that offers experience, expertise, and a comprehensive portfolio of products and services — someone who can minimize risks, optimize outcomes and increase your flexibility. 

Sartorius addresses your needs at every stage of the journey to commercialization, whether you need a fully outsourced solution or select products and services to complement your in-house cell line development (CLD) capabilities.

A Flexible Portfolio for Cell Line Development and Beyond 

CLD Instruments

Making the right decisions early is a key differentiator in cell line development. Enhance your selection and characterization processes by choosing high-throughput solutions that can increase lab productivity, reduce costs and shorten timelines.

Explore Our Innovations

CLD Services

A misstep during early-stage drug development can cause major delays and roadblocks to commercialization. Increase your chances of success by choosing a competent and experienced partner for your cell line development project. 

Explore Our Services

CLD Custom Solutions

As you build your unique bioprocess, you need flexible solutions that enhance and extend your capabilities. Sartorius offers a full range of products and consulting expertise so you can get the right technologies and the right advice at exactly the right time to maximize your success.

Explore Our Adaptable Approach

Cell Line Development Instruments

Innovative Products and Expertise to Optimize Your Processes

When building a team and capabilities to conduct high-throughput analysis and characterization, you need a partner who offers state-of-the-art technology along with training, support, and skill development for your staff.  

Sartorius’ high-throughput systems — Octet®, iQue®, and Ambr®15 platforms — are the most popular choice of labs globally for the early identification of stable, scalable, and high-titer cell lines. These innovative instruments streamline early-stage development and enable a smooth transition to manufacturing. 

  • Increase lab productivity 
  • Reduce costs 
  • Shorten experimental timelines 

Explore Our Instruments

icon-webcast

Streamline CLD Workflows With Integrated Instruments

Discover how Sartorius’ innovative products and expert knowledge can provide an efficient and scalable solution to CLD

Watch Now

Cell Line Development Services

Expert Outsourced Services from a Single Trusted Provider

Fully outsourcing cell line development is the best choice for many manufacturing scenarios. Sartorius’ outstanding cell line technology and its experienced team, with more than 120 successfully developed cell lines, anchors our single-vendor approach for cell line development.

We cater to the individual needs of our customers at each stage to ensure a successful research cell bank (RCB), master cell bank (MCB), and working cell bank (WCB). Save up to 18 months in process optimization and scale easily for commercialization.

  • Outsource to a proven team 
  • Benefit from Sartorius’ leading CHO cell line development technology 
  • Draw upon our experience with over 120 successfully developed cell lines 

Explore Our Services

Learn more about the cell line development services Sartorius offers.

Cell Line Development Custom Solutions

A Tailored Approach to Fit Your Process Needs

If you’re building a unique bioprocess that complements your in-house capabilities with some combination of advanced technologies, state-of-the-art instruments and experienced scientists from external providers, you benefit from a proven partner that can provide everything you need.

Sartorius offers a flexible suite of products and services and a deep bench of cell line development experts, so we can help you design a custom solution that fits your unique processes. 

  • Implement an adaptable approach 
  • Benefit from 100% flexibility 
  • Streamline with a single-vendor approach 

Explore Our Adaptable Approach

Understand the different steps of gene cloning and inital clone selection.
0 / 0
Learn more about the correct cell line selection and confirmatory Analysis in your CLD process.
0 / 0
Discover the different steps in cell line cultivation and media optimization.
0 / 0
Learn more about cell line evaluation and characterization in your biopharmaceutical process.
0 / 0
Understand the steps of cell banking that are needed for a stable and scalable cell line development process.
0 / 0

Learn More From Sartorius Experts

icon-article

A Guide to Accelerating CLD for Commercial Production 

In this White Paper, Sartorius will provide an overview of cell line development and the associated hurdles that biotech companies should be aware of when establishing their process. Additionally, potential solutions that developers can access as part of an effective risk-management strategy and to improve their productivity are introduced.

Download White Paper

icon-webcast

Cell Line Development Webinar Series

Learn strategic approaches, best practices, critical considerations, and expert insights on-demand.

Browse CLD Webinars
Infographic

Five Ways to Accelerate Your CLD Process

PDF | 98.4 KB
Infographic

Cell Line Development Facts & Figures

PDF | 285.2 KB

Frequently Asked Questions

Usually both, toxicology and first-in-human clinical materials are generated using the same clonal-derived cells to ensure safety and minimize any development risks. However, cell line development with single cell cloning is time consuming and aggravated by the time needed to screen for a lead clone based on cell line stability and manufacturability. In order to achieve faster timelines, there are approaches using pools of several clones for earlier production of drug substance for regulatory filing-enabling toxicology studies, and later the final single clone will be selected for production of clinical materials.

Post-translational modification is a common event during protein production from eukaryotic cells. It includes a wide variety of chemical modifications, such as acetylation, amidation, carboxylation, phosphorylation, and glycosylation. These important chemical modifications are essential for protein folding, stability, and function. 

Among these various post-translational modifications, glycosylation is the most complex one from the perspective of chemical heterogeneity of modifications because it involves the covalent attachment of sugar moieties to proteins. There are two common types of glycosylation: O-linked glycosylation and N-linked glycosylation.

The glycosylation pattern plays an important role in the biological activity of a protein, such as that of afucosylated monoclonal antibodies (mAbs).

During therapeutic antibody production via mammalian cells, such as Chinese hamster ovary (CHO) cells, N-linked glycosylation is commonly observed. For the IgG1 type of antibodies, there is a conserved site in the heavy chain Fc region for glycosylation. During the post-translational modification, multiple sugar moieties (e.g., N-acetylglucosamine (GlcNAc), mannose, fucose, galactose) can be assembled with complex combinations to form a variety of glycosylation patterns. Advances have been made primarily in upstream processing, including mammalian cell line engineering, to yield more predictably glycosylated mAbs and the addition of media supplements during fermentation to manipulate the metabolic pathways involved in glycosylation. Another strategy is the implementation of novel downstream technologies, such as the use of Fcγ-based affinity ligands for the separation of mAb glycovariants.
 

It is common in cell line development to get a certain percentage of clones that unstable, meaning that they lose productivity over time due to a loss of gene copies or gene silencing effects. Depending on the applied technology the proportion of unstable clones can be up to 50 % or higher. However, with mature technologies such as Sartorius’ Cellca Cell Line Development Technology the percentage of stable clones can be  80 % or more.  

Nearly all cellular systems are heterogeneous, contributing to specialized functionality and improved survival. A profound comprehension of single cell heterogeneity on genomic, epigenomic, transcriptomic and proteomic level is critical for understanding its impact on the functioning of organism in both healthy and diseased condition.

Most of our current knowledge about different cell and tissue types comes from bulk assays though, analyzing hundreds to millions of cells together, which may highly underestimate the true spectrum of cellular heterogeneity.

Modern technologies allow the analysis on single cell level therefore taking a huge step forward in the understanding of cellular heterogeneity and its implications:

  • Single cell heterogeneity analysis can help to clarify developmental pathways, e.g., how stem cells make their fate decision, contributing to the development and maintenance of differentiated tissue. This is not only important for understanding malignancies caused by missing or misdirected differentiation but especially for the field of regenerative medicine.
  • In order to analyze the cellular heterogeneity on single cell level e.g., by whole genome amplification (WGA), SNP detection or sequencing target cells have to be selected and isolated in high purity from a heterogeneous background. The CellCelector™ is the perfect tool for the automated identification and isolation of 100 % pure individual single cells offering many advantages over other methods.
  • Target cells are detected and selected for isolation based on microscopic imaging. This enables target cell selection utilizing fluorescent markers but also through distinct morphological features a target cell might express and that is visible in microscopy. This allows label free detection of target cells independently of fluorescent markers. Furthermore, a live image during isolation as well as automated recording of before and after picking images of each isolated single cell create a comprehensive documentation of the picking process ensuring that only target cells have been picked without contamination of non-target cells. The fast isolation process is extremely gentle resulting in high cell integrity (up to 100 % outgrowth rate in cloning applications) and outstanding transfer efficiency of up to 100%.

Request a Quote, Demo, or More Information

What other areas are you interested in? (select all that apply)

Consult Our Cell Line Development Experts