Flow Cytometry by Sartorius
Scientists use flow cytometry to investigate complex biological processes as part of routine cell analysis workflows. This research has significant impact to society as it drives progress in antibody discovery, T-cell engineering, and immuno-oncology. To speed up progress, investigations need a faster way to generate biologically relevant data from many samples.
Sartorius recognizes the need to update decades old complexity in flow cytometry instruments that utilize inefficient, disjointed sampling and data analysis workflows. Our intuitive flow cytometers can take you from sample to biologically relevant data faster than any instrument on the market. Additionally, elegant and easy to use software empower you to make sense of complex datasets and move your research forward.
Explore the iQue® 3 Advanced Flow Cytometer Explore Flow Cytometry Applications
Advanced Flow Cytometry Solutions
Video: Speed Up Your Entire Workflow With Sartorius Advanced High Throughput Flow Cytometry Solutions
The iQue® 3 Advanced Flow Cytometry Platform has the ability to handle 96, 384, or 1536-well plates, and enables continuous plate loading through connection with any automation system.
Flow Cytometry Applications
Advanced Flow Cytometry Applications to Support Your Most Important Research
Sartorius flow cytometry applications allow for live-cell, multiplexed analysis of cell phenotype and function in a single well to resolve complex cellular research questions.
Generate relevant and accurate data through simultaneous analysis of multiple biological readouts and quickly identify your next discovery using the iQue® Advanced Flow Cytometry platform.
Explore All Flow Cytometry Applications Explore Flow Cytometry Instruments
See What Sartorius Has to Offer In Flow Cytometry
Why Choose Sartorius Advanced Flow Cytometry Solutions?
- Optimized mix-and-read reagent kits with ready-to-use analysis templates
- Flexible fluorophore options with up to 3 laser excitation and 13 color emission channels
- No adjustment optics for scalable, reliable, and reproducible data collection in multi-user environments
- Enhanced rinse station with intelligent software reporting of cartridge levels
- Patented sampling technology processes 96 wells in as little as 5 minutes; 384 wells in 20 minutes
- Automated plate calibration, QC, detector cleaning and shut down
- Single-software solution for all your acquisition and analysis needs
- Rapid data visualization—adjust a gate to see updated plate-wide analysis in real time
- Guided creation of metrics, statistics, visualizations and reports
- Easily identify wells of interest using multiple selection criteria
- Compare, identify, and rank wells in all plates across your experiment
- Drill down from experiment level, to plate level, to well level, to cell level
Case Studies: Hear From Sartorius Advanced Flow Cytometry Users
University of Copenhagen Immunology
Learn about the use of advanced high throughput flow cytometry and how it helps direct drug selection in patients with relapsed Acute Myeloid Leukemia
University of Liverpool Small Molecule Discovery
This video describes the use of advanced flow cytometry to detect the uptake and transport across membranes of small molecules by microbes
Additional Resources
Introduction to Advanced Flow Cytometry
Faster time to actionable results. Turn complex science into meaningful insights with cell phenotyping and secreted protein detection within the same well.
iQue® Advanced Flow Cytometry Publications
With over 200 references worldwide, the iQue®️ Advanced Flow Cytometry System helps researchers explore new areas of study and address questions fundamental to life science research.
Flow Cytometry Servicing & Support
Our Global Technical Support team provides expert installation, training, technical support and repair services to our customers worldwide.
Frequently Asked Questions
Sartorius Flow Cytometry FAQs
Get answers to the most common questions about about Sartorius flow cytometry solutions including critical information regarding instruments, applications, software, service, and more.
Flow cytometry analyzes the physical characteristics of suspension cells and particles using information about their size, complexity (also termed granularity) and relative fluorescence intensity.
The fluidics system of a flow cytometer transports the fluid stream to a laser beam. Cells or particles pass through the laser one by one, in single file. In the optics system component of a flow cytometer, the laser beam illuminates the cells/particles and directs the scattered light and fluorescence to the appropriate detectors.
The electronics system of a flow cytometer converts these light signals into electronic signals that can be processed by your computer. A typical flow cytometer can be set to collect a certain number of events per sample.
Any suspended particle or cell from 0.2–150 micrometers in size is suitable for analysis. Cells from solid tissue must be desegregated before analysis.
To gather additional information, cells can be labeled with fluorescent molecules. Specifically, fluorochrome-labeled antibodies can be bound to proteins on the cellular surface (antigens). If a cell has many antigens, a large number of fluorochrome-labeled antibodies will bind to it producing a strong fluorescent signal. A cell with no or few antigens will produce a weaker fluorescent signal.
Fluorescent marker, such as a fluorophore-conjugated antibody, directly target an epitope of interest and allow its biological and biochemical properties to be measured. Fluorescent markers are useful in a wide range of applications, including identifying and quantifying distinct populations of cells, cell surface receptors, or intracellular targets, cell sorting, immunophenotyping, and apoptosis studies.
In a flow cytometry experiment, every cell that passes through the interrogation point and is detected will be counted as a distinct event. Each type of light that is detected (forward-scatter, side-scatter, and each different wavelength of fluorescence emission) will also have its own unique channel.
The data for each event is plotted independently to represent the signal intensity of light detected in each channel for every event. This data could be visually represented in multiple different ways. The most common types of data graphs used in flow cytometry include histograms, dot plots and contour diagrams.
Histograms
A histogram is commonly used to compare the fluorescence intensity of two or more populations.
Dot Plots
Dot plots compare 2 or 3 parameters simultaneously on a scatter-plot where each event is represented as a single point (or dot). The dot plot is a figure that shows the relationship between multiple variables at once, and the parameters can be any combination of scatter and fluorescence signals.
Contour Plots
Contour plots display the relative frequency of the populations, regardless of the number of events collected. A contour diagram displays the probability contouring with joined lines representing similar numbers of cells. Concentric rings form around populations so that the higher the density, the closer the rings are on the contour diagram.
Figure 1. Examples of flow cytometry data. (A) Raji cells (brightly labeled with iQue® Cell Proliferation and Encoding (V/Blue) Dye), Ramos cells (dimly labeled with encoder dye) and Jurkat cells (unlabeled) were combined (5K/well) for a CDC assay and separated based on their encoder dye fluorescence, as displayed in the histogram. (B) Dot plot example of pre-defined gates on iQue Forecyt® enable automatic phenotyping of human T cell subsets. (C) Contour plot with clear gating of the CD14 positive population.
Flow cytometry is a powerful tool that has applications in immunology, molecular biology, bacteriology, virology, cancer biology and infectious disease monitoring. The most used application in flow cytometry is immunophenotyping. It utilizes the unique ability of flow cytometry to simultaneously analyze mixed populations of cells for multiple parameters such as surface markers, cytokine analysis and cell health.