

Adsorptive Pre-Filtration to Increase Virus Filter Performance and Overall Process Robustness in Blood Derived Processes

Volkmar Thom, Björn Hansmann, Jörg Hosch, Benjamin Schneider

Sartorius-Stedim Biotech GmbH, Göttingen, Germany, Membrane R&D

Adsorptive pre-filters

The evaluation of virus filters is not confined only to their capacity to retain viruses. Indeed, selection of a virus filter is influenced by numerous factors. One factor gaining increase importance is process economics. Different adsorptive pre-filters have been introduced to the marked for capacity increase of virus-retentive filters. Todays established adsorptive pre-filters are compared in the table below.

Depth Filter	CEX Membrane	Virosart® Max¹
• Nearly independent of conductivity	Affected by process conditions (pH, conductivity)	 Performance independent from process conditions (conductivity)
● High extractable particle load	♣ Low extractable particle load	♣ Low extractable particle load
● Integrity test not available	● Integrity test not available	● Integrity test by air diffusion

Sartorius patent DE102011105525-B4; US, EP and WO patents pending, 'Method for removing biopolymer aggregates and viruses from a fluid'

Characteristics of Virosart® Max

Working principle

- Combination of adsorptive capacity and size exclusion leads to removal of virus filter foulants
- Aggregates and or small hydrophobic molecules are typical virus filter foulants

Filter Configuration

- Material: Optimized polyamide
- Pore size: 0.1 µm (nominal)
- Format: Triple-layer pleated elements
- Size: Available from 5 cm² to 30" elements

Higher capacity through aggregate reduction

The impact of Virosart® Max on the filtration of different IVIG concentrations (5, 10 and 20 g/L) through Virosart® HC 20 nm virus filter (5 cm² Minisart® devices) was analyzed. Filtrations have been performed with and without the use of Virosart® Max at 2.0 bar | 30 psi filtration pressure. Results were compared at 90% flow decay.

As a result, filtration capacity scales with solution concentration because the concentration of membrane fouling impurities scales accordingly.

Robust against process conditions

The effect of different pre-filtration strategies was evaluated for IVIG (5 g/L) in different buffer conditions at varying pH and ionic strength using Virosart® HC 20 nm virus filter (5 cm² Minisart® devices) at 2.0 bar | 30 psi.

As a result, the use of Virosart[®] Max results in lowest performance spread by varying process conditions.

Implementation

Cartridges and capule format of the filter allows flexible process implementation:

Stainless steel housing setup

- Robust setup
- Steam sterilization and pre-use integrity testing possible

$Virosart^{\tiny{\circledR}}\,Max$ Virosart® HC cartridge cartridge

Single-use setup

- Ease of use
- Flexible
- Pre-use integrity testing limited under fully-contained sterile conditions

Automated setup

- Customized set-up
- High level of automation

Spiking studies

Preferred Option:

Off-line pre-filtration (decoupled)

Product is pre-filtered off-line and afterwards virus spike is added to the product feed

- Pressure | flow adaption over pre-filter
- Low capacity of virus filter by highly fouling feed streams
- Common approach in the industry
- Pre-filtration before validation to restore sample

Alternative 1:

In-line pre-filtration (coupled)

Pre-filter and virus filter are run in-inline and virus spike is added in-line.

● Virus retention by pre-filter not rated as robust

• Possible if pre-filter is tested independently for virus retention

Alternative 2:

In-line pre-filtration with in-line spiking Pre-filter and virus filter are run in-inline, but the virus spike is

- added in-line after the pre-filter.
- Complex setup
- Difficult control of feed titer

Alternative 3:

Spiking virus selection

Validate virus-retentive filter for parvoviruses (PPV, MVM) and imply sufficient LRV for larger viruses (MuLV, PRV)

Accepted by regulatory authorities?

References

'Artifacts of Virus Filter Validation', P. Genest, H. Ruppach, C. Geyer, M. Asper, J. Parrella, B. Evans, A. Slocum, BioProcess International 2013.