SARDRICS

Simplifying Progress

Facilitated Process Scalability Using a Novel Raman Spectroscopy Integration

Michael Sibley¹*, Angus Woodhams¹, Marek Hoehse²

1 Sartorius Royston, UK. 2 Sartorius Göttingen, Germany. *michael.sibley@sartorius.com

Aims

- Demonstrate hardware comparability of the BioPAT[®] Spectro interfaces in Ambr[®] and Flexsafe STR[®] and existing immersion probes
- Demonstrate model scalability of a cell culture process from Ambr[®] to the production size Flexsafe STR[®] bags

Key Features of BioPAT[®] Spectro in Ambr[®] and Flexsafe STR[®]

BioPAT[®] Spectro Key Features

- Scalable Raman Spectroscopy platform from 15 mL to 2000 L
- Ambr[®] Analysis Module with replaceable Raman flow cell
- Compatibility: Ambr[®] 15 Cell Culture, Ambr[®] 250 High Throughput
- Fully automated data acquisition, alignment and model application in Ambr[®], with automated spiking
- Fully integrated and sterilized single-use port in Flexsafe STR[®] 50 2000 L
- Port qualified for GMP manufacturing, shields measurement from ambient light and decouples the measurement from process conditions such as gassing and stirring
- Raman spectroscopy: Compatibility with Raman spectrometers from Endress+Hauser Optical Systems and Tornado Spectral Systems
- Facilitated model transfer from Ambr[®] to Biostat STR[®] and vice versa due to identical optical design and the use of the same fiber optic probe

Figure 1: Schematic Diagram of the BioPAT[®] Spectro Raman Spectroscopy Integration in Ambr[®] 15 Cell Culture, Ambr[®] 250 High Throughput And Biostat STR[®] Single-Use Bioreactor Systems.

Hardware Scalability Tested in a Lab Set-Up

Model Building Using the Ambr[®] Flow Cell

- Ambr[®] flow cell with four different optical windows
- Raman spectra were acquired for each combination with glucose concentrations between 0.5 and 10 g/L
- Four corresponding glucose models were built using SIMCA[®]

BioPAT[®] Spectro flow cell from Ambr[®] 4 Windows

- 4 Ambr[®] Glucose Models Glucose 0.5-10 g/L
- Figure 3: Schematic of the Experimental Setup: 4 Different Windows Were Tested in the BioPAT[®] Spectro Ambr[®] Flow Cell and Glucose Models Were Built.

Model Transfer From the Ambr[®] Flow Cell to the Flexsafe STR[®] Port and an Immersion Probe

- Single-use ports of the Flexsafe STR[®] with the same four optical windows from above
- Raman spectra were acquired for each combination with glucose concentrations between 0.5 and 10 g/L
- A conventional immersion probe used to acquire spectra in a beaker with 0.5 10g/L glucose
- Glucose multi-variate models generated with the Ambr[®] flow cells were used to predict the glucose concentrations

Process Scalability Tested in a Cell Culture Process

Model Building Using the Ambr[®] 250 High Throughput

- N= 16 Ambr[®] 250 High Throughput bioreactors
- Sartorius' Cellca 2 Process CHO producing mAb
- Integrated Raman and Nova Flex 2 analyzers
- 200 data points assayed by Flex 2 then Raman, of which ~35 were spiked with 7.1 or 33.3 g/L glucose
- Data was automatically collated in the Ambr[®] software and manually exported to SIMCA[®]
- SIMCA® 16 software was used for multivariate model building

Figure 6: Graph Showing the Performance of the Glucose Model Built in Ambr[®] 250 When Applied to Ambr[®] 250 Vessels That Did Not Contribute to The Model Building Data. Automated Spiking Was Performed With Two Different Glucose Stock Solutions.

Model Transfer From Ambr[®] 250 to 200 L Biostat STR[®]

- Cellca 2 process was run in a 200 L Flexsafe STR[®] bag, at a different Sartorius site using a spectrometer and fiber optic probe with different serial numbers
- BioPAT[®] Spectro SU port was used, which comes integrated and sterilized inside the bag
- The Ambr[®] mutli-variate model was applied to the spectra without further modifications to predict glucose

Model Transfer Results

- The Ambr[®] model on the Biostat STR[®] data predicted the glucose profile and identifies feeding events
- Predictions agreed with offline measured glucose concentration
- Improved results are to be expected when updating the Ambr[®] Raman model with spectra acquired in at least one Biostat STR[®] run, which we recommend

Not spiked

■ 7.1 g/L Glucose

2 Flexsafe STR[®] Spectro Ports 4 Windows

Glucose 0.5 – 10 g/L

Figure 4: Schematic of the Experimental Setup: The 4 Different Ambr® Glucose Models From Above Were Applied to Predict the Glucose Concentration Of 4 Different SU Port/Window Combinations.

Model Transfer Results

4 Ambr® Glucose Models

- Ambr[®] models led to a consistent and precise prediction of the glucose concentrations in the Flexsafe STR[®] ports and the immersion probe
- The average prediction error across all predictions was 0.23 g/L and is comparable to the literature.

Figure 5: Graph Showing the Prediction of the 4 Ambr[®] Models Of the Glucose Concentrations Measured With The STR SU Ports and a Conventional Immersion Probe.

Figure 7: Graph Showing the Prediction of the Raman Glucose Model Built in Ambr® of the Glucose Concentration in the Biostat STR® 200.

Conclusions

- Raman models transfer between the hardware used to acquire Raman spectra in the Ambr[®] and Biostat STR[®] systems in a laboratory set-up
- The BioPAT[®] Spectro optical interfaces are comparable to conventional immersion probes and models can be transferred between them in a laboratory set-up
- The Raman glucose model for the Cellca2 process in the Ambr[®] 250 High Throughput acquired by the BioPAT[®] Spectro integration is readily transferable to the same process in the Flexsafe STR® bag using the BioPAT® Spectro SU port
- This indicates that models built for other processes and analytes are also likely to scale well in the BioPAT[®] Spectro platform