SARTORIUS ## A Robust, Single-Use Solution for Expansion of Human Mesenchymal Stem Cells in Xeno-Free Medium David Splan¹, Rupal P. Soder², Joe Guy¹, Eric Black¹, Zheng Zhao¹, Alyssa Clearwood¹, Chrysi Beltsos¹, Baylee Edwards¹, Fatemeh Khodadadei¹, Namitha Haridas¹, Irina Robu¹, Amin Vossoughi¹, Mark Szczypka¹ ¹Corporate Research, Sartorius Stedim North America, Bohemia, NY, USA ²Midwest Stem Cell Therapy Center, University of Kansas Medical Center, USA #### Experimental Approach The objective of this experiment was to expand umbilical cord-derived mesenchymal stem cells (MSCs) on collagen-coated microcarriers (MCs). A seed train, which consisted of a N-1, 2 L Univessel® Glass bioreactor (BR), was used to generate cells to seed a Biostat STR® 50 BR at 30 L. Cells were expanded for 7 days prior to harvest and concentration using the Ksep® 400 centrifuge. # Current Process Proposed Process Workflow An onerous planar culture process generating a limited number of cells Sufficient process for Phase I and Ib clinical trial with 20 patients Not enough to satisfy Phase II requirements of 80 patients Phase III patient cohort projected at 300 patients Phase III patient cohort projected at 300 patients #### Materials 2 L Univessel® **DAPI Images** Biostat STR® 50 **Figure 1:** Schematic of the Sartorius Pilot and Scale-up Solutions, Including, Biostat® B and Universel® Glass Bioreactors, MSC NutriStem® XF Medium, Biostat STR® 50 Gen3 Bioreactor, Ksep® 400, Solohill® Collagen-Coated Microcarriers in Microcarrier Delivery Systems (MDS), Biosealer®, Biowelder® and iQue® 3 Flow Cytometer #### Results #### Optimization of 2 L Bioreactor Process | Parameter | Target | Result | | |-------------------------------|---------------|--------|-------| | | | Glass | SU | | Harvest density
[Cells/mL] | ≥ 6e5 | 1.3e6 | 9.7e5 | | Viability [%] | ≥90 | 96 | 97 | | Harvets efficiency [%] | ≥ 90 | ≥ 95 | ≥ 95 | | Total cell harvested | ≥ 1.0e9 | 1.9e9 | 1.6e9 | #### Characterization of Cells Harvested From the Biostat STR® 50 Bioreactor | MSC Characterization (Specifications) | Total [%] | |---|-----------| | Purity (≥ 80%) | ≥ 96.9 | | MSC characterization (≥ 95% CD73, CD90, CD105) | 98 | | Lin negative (≤ 2% CD34, CD45, CD11b, CD19, HLA-DR) | 2 | | Viability (≥ 80%) | 97 | **Figure 4A:** MSC Surface Markers Are Maintained After Expansion In 3D Suspension-Based Culture Systems #### Characterization of Cells Harvested From Biostat® B 2 L Bioreactors | C Cocktail | | | |---------------------------------|---|-----------| | | MSC Characterization (Specifications) | Total [%] | | | Purity (≥ 80%) | 94 | | | MSC characterization (≥ 95% CD73, CD90, CD105) | 97.6 | | - | Lin negative (≤ 2% CD34, CD45, CD11b, CD19, HLA-DR) | 0.7 | | hanne I | Viability (≥ 80%) | 91.6 | | 10 ⁴ 10 ⁸ | | | Figure 4C: MSCs Retain Normal Karyotype After Expansion in Univessel® Bioreactors #### Figure 2A: MSC Surface Markers Are Maintained After Expansion in 3D Suspension-Based Culture Systems Figure 2B: MSCs Expanded in Univessel® Bioreactors Maintain Their Potency and Immunosuppressive Capacity Figure 2C: MSCs Retain Normal Karyotype After Expansion in Univessel® Bioreactors #### Multilineage In Vitro Differentiation of MSCs: Osteocyte and Adipocyte Lineages 2 L Univessel® Biostat STR® 50 Osteocyte Adipocyte Performance of the Scale-Up Process #### Summary Control - The Sartorius MSC pilot solution, along with the subsequent MSC manufacturing solution, comprise a scalable offering that provides continuity and enables seamless process transfer for industrialized expansion of adherent cell types - This study provides proof of concept for the successful transition from a 2D static to a 3D suspension culture process for cell expansion, using Sartorius MSC solutions - With these solutions, MSCs can be robustly expanded to large working volumes in a simplified seed train. Cells maintain high viability and stem cell relevant critical quality attributes - Sartorius solutions enabled KUMED to generate enough cells to reach clinical trial goals - This accelerates time to market and saves on production costs, ultimately leading to increased accessibility and affordability of these life-saving therapies