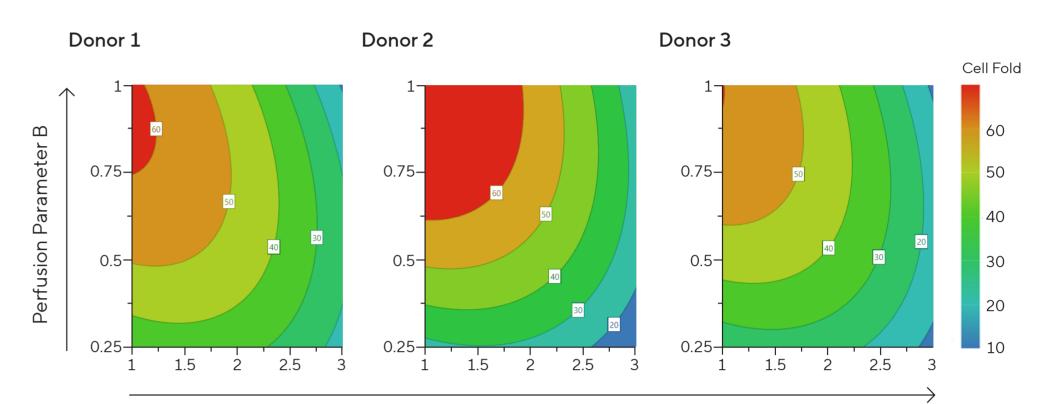
SARDRICS

Optimizing Perfusion Parameters Using Quality by Design for the Intensified Production of CAR-T Cells in a Single-Use Automated Stirred-Tank Bioreactor

P. Springuel¹, T. Hood¹, F. Slingsby², N. Bevan², T. Schmidberger³, W. Geis³, J. Hengst³, N. Dianat⁴, Q. Rafiq¹


1. Dept. of Biochemical Engineering, University College London, 2. Sartorius UK Ltd., 3. Sartorius Stedim Biotech GmbH, 4. Sartorius Stedim France S.A.S.

Introduction

Methods

- The exvivo expansion of patient chimeric antigen receptor (CAR) T cells to therapeutic doses is often challenging and represents the longest phase of manufacturing.
- Scalable expansion processes that maximize CAR-T cell yields and reduce vein-to-vein time are therefore required to meet rising demand at reduced costs.
- This study systematically investigates the optimization of perfusion parameters to maximize CAR-T cell growth and quality in a single-use, automated stirred-tank bioreactor, with a view to reducing process time for autologous processes and increasing yields for allogeneic modalities.

Optimal Perfusion Parameters Are Donor-Dependent

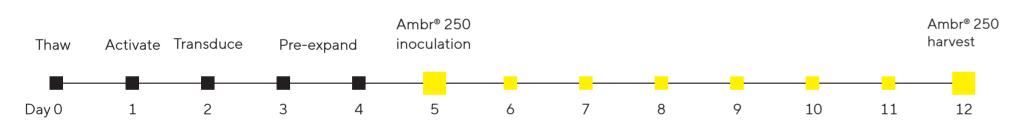
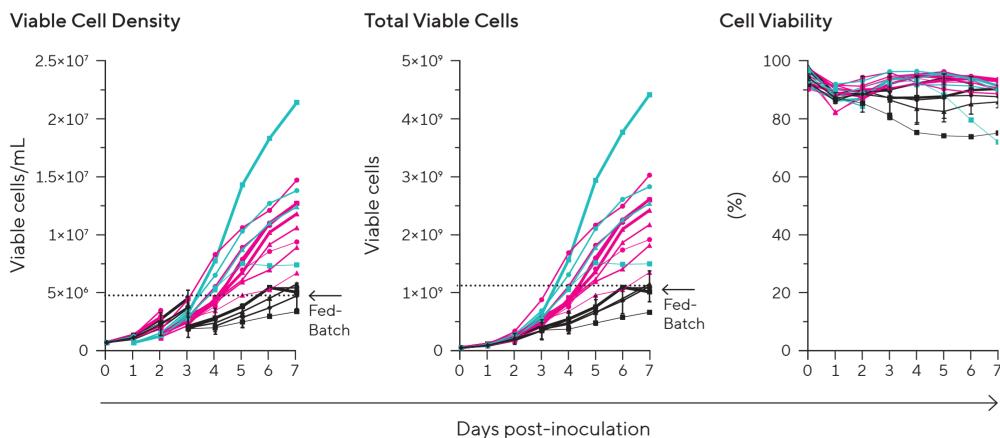
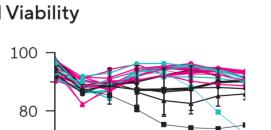

- A design of experiments (DOE) approach was applied to assess the impact of critical perfusion parameters A and B, and donor variability on the expansion of CAR-T cells in the Ambr® 250 High Throughput Perfusion single-use stirred-tank bioreactor. A total of seventeen week-long perfusion cultures were performed in serum-free 4Cell® Nutri-T Medium.
- Anti-CD19 CAR-T cells were generated via retronectin-assisted lentiviral transduction and pre-expanded in static flasks before inoculation into the bioreactor.
- Measured outcomes included daily cell counts and immunophenotypic characterization of T cells at inoculation and harvest in the Ambr[®] 250.

Table 1: Factors and levels investigated in the perfusion DOE.

Factor	Level			
	Low	Mid	High	
Perfusion Parameter A	1	2	3	
Perfusion Parameter B	0.25	0.5	1	
Healthy Donor	1	2	3	


Image 1: Ambr[®] 250 High Throughput Perfusion unbaffled ATF vessel


Figure 1: Experimental overview.

Perfusion Supports up to 4.5× Improvement in Final Cell Yields

Perfusion Parameter A: Perfusion Parameter B: Healthy Donor: -1 -2 -3 - Fed-batch -0.25 - 0.5 - 1●1 ■2 ▲3

a)

Perfusion Parameter A

Figure 3: The optimal combination of perfusion parameters for the expansion of CAR-T cells varies by healthy donor. Contour plots generated in MODDE® software model effects of perfusion parameters A and B on CAR-T cell fold-expansion in 4Cell® Nutri-T Medium in Ambr® 250.

Harvested CD8+T Cells Are Rich in Naïve|Central Memory Subsets

Perfusion Parameter A: ● 1 ● 2 ● 3 ● Fed-batch	Perfusion Parameter B: ● 0.25 ● 0.5 ● 1	Healthy Donor: ●1 ■2 ▲3	
Naïve	Central Memory	Effector Memory	Effector
+ 100 80 60 40 40 20 40 1 2 3 (Fed-batch)	+ 100 80 40 40 40 20 1 2 3 (Fed-batch		

Perfusion Parameter A

Figure 4: CD8+T cells harvested from the Ambr[®] 250 were predominantly of naïve and central memory subsets, irrespective of the perfusion parameters.

Differentiation marker expression for CD8+T cells harvested from 17 DOE bioreactor runs.

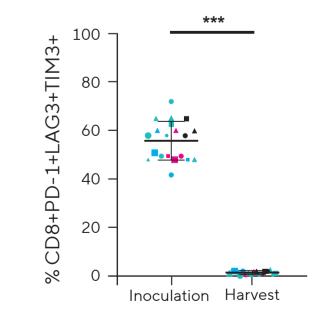

b) Exhaustion

Figure 2: Implementing perfusion significantly improved cell growth compared to fed-batch, while maintaining > 90% cell viability.

Daily viable cell density, cell yield, and viability counts for all 17 DOE bioreactor runs.

Process	Total doses produced ¹	Expansion time for 1st dose	Avg. medium for 1 dose	Vessel required
Fed-batch	1	~7 days	~250 mL	1 × Ambr® 250
Optimized perfusion	4	~3 days	~400 mL	1 × Ambr® 250

Assumes 1e9 viable cells per dose. Data shown is specific to the expansion phase only. ¹Total doses produced over a 1-week expansion in Ambr[®] 250.

Figure 5: Implementing perfusion significantly improved process efficiencies and throughput, without negatively impacting cell exhaustion at harvest. a) Process efficiencies for fed-batch vs optimized perfusion process in the Ambr® 250; b) Exhaustion marker expression of CD8+T cells harvested from 17 DOE bioreactor runs.

Conclusion

- Optimizing perfusion parameters in the Ambr[®] 250 stirred-tank bioreactor led to 4.5× higher CAR-T cell yields than the fed-batch process, and reduced the expansion time required to reach a therapeutic CAR-T dose of 1e9 viable cells by up to 50%.
- Irrespective of the perfusion conditions, the majority of harvested CD8+T cells were in naïve/central memory subsets and displayed very low exhaustion marker expression.
- This work highlights the benefits of perfusion versus fed-batch when intensifying the production of high-quality CAR-T cells in stirred-tank bioreactors.
- In addition, it emphasizes the importance of optimizing the perfusion parameters to maximize cell yields, reduce costs and shorten process timelines.