SARDRIUS

Simplifying Progress

Intensification of mAb Processes: Leveraging Sartobind[®] Rapid A and a Fully Connected Membrane-Based DSP

Fabien Rousset

Sartorius Stedim FMT S.A.S., Zone Industrielle les Paluds, 300 Avenue de la Fleuride, 13400 Aubagne, France Contact: fabien.rousset@sartorius.com

Introduction

In the field of monoclonal antibody (mAb) purification, there is an increasing demand for high-performance chromatography membranes that are ready-to-use and support a "one-batch-one device" manufacturing strategy. The new Protein A capture technology Sartobind[®] Rapid A increases productivity 10-fold compared to traditional resins (203 g/L vs. 14 g/L, respectively) when used in rapid cycling conditions. The membranes also show similar performances for dynamic binding capacity (DBC), yield, and host cell protein (HCP) | host cell DNA (hcDNA) removal. As such, the Sartobind® Rapid A supports a new generation of fully membrane-based purification platforms.

The first milestone in a fully membrane-based process is implementing a competitive double-flowthrough polishing process with connected Sartobind® Q and Sartobind® S. Comparable purity and yield were obtained (> 98% for each flowthrough step) with a strong footprint reduction of the purification process. The second step to a full membrane process is combining the Resolute[®] MCC multi-column technology with Protein A and anion exchange (AEX) and cation exchange (CEX) membranes in parallel batch mode. This drives further productivity increases (> 400 g/L/h) compared to a resin-based multi-column chromatography process (< 200 g/L/h).

This innovative Sartobind[®] Rapid A combined with process intensification solutions demonstrates that alternative mAb purification platforms are a highly competitive alternative to classic resin-based approaches.

IEX Polishing

Double Flow-Through With Membrane Adsorbers²

IEX Polishing

Convecdiff Membrane Sartobind[®] Rapid Avs Purely Convective | Diffusive Materials

for Commercially Available Materials and

the Convecdiff Sartobind[®] Rapid A

Sartobind[®] Rapid A enables lifetime capacity utilization in one single-batch \checkmark ■ Fast cycles: 10 – 15 min apid cycle (10 min) ~30-150 cycles/batch

Convecdiff materials support high DBC and

flowrate to facilitate short cycle time

 \checkmark

IEX Polishing Protein A

Comparability of Sartobind[®] Rapid A and Standard Resin¹

We compared critical process paramters (CPPs) and critical quality attributes (CQAs) between Sartobind® Rapid A and standard Protein A resins. Both materials were tested with the same feed material. The analyzed data show a very good comparability of Sartobind[®] Rapid A with the Protein A resin. The membrane showed superior performance in DNA reduction and Protein A leaching, with a 14.5-fold increase in productivity.

	Sartobind® Rapid A	Protein A Resin
DBC10% [g/L]	42.9±0.8	30.4±0.5
Residence time [min]	0.2	4.0
Yield [%]	94.7±0.2	96.4±0.4
HCP reduction [LRV]	2.2±0.2	2.3±0.1
hcDNA reduction [LRV]	2.9±0.2	2.3±0.1
Protein A leached [ppm]	2.7±0.7	6.7±0.3
Av. Productivity [g/L*h]	203.6	14.1

Figure 2: Productivity Comparison of Standard Protein A Resin to Sartobind[®] Rapid A

Note. Sartobind® Rapid A - Beta Test Opportunity. DoE done with MODDE® 13

IEX Polishing Protein A

Chromatography Membrane – Towards a Connected Process²

Step 3: Connected Processing

- Comparable purity with classical process
- No column packing
- Rapid cycling chromatography (RCC) enables strong footprint reduction Full single batch use

Protein A IEX Polishing

Downstream Intensification Reduces Processing Times

- Each step starts before the previous one ends
- This enables processing the sub-batches from Protein A elution
- Reduction of intermediate tanks and column size
- Lower footprint
- Lower OPEX

IEX

The Power of Connected Membrane Processes

IEX Polishing

Levels of Intensification for Downstream Processing

Level 0	Ö	Level 1	۲	Level 2	ΰů	Level 3	0000	Level 3.1	$\xrightarrow{\circ } \\ \circ \\ \circ \\ \uparrow $
Standard batch, standalone UO		Intensified, star UO: increases t vidual step proc higher cycling (or MCC), impro buffer manager (ILD, ILC), high resins; pooling t	ndalone he indi- ductivity; RCC oved ment DBC canks	Connected p at least 2 UO; steps started step is finished could be stag batch; may ha tanks; softwar tration is bene be called cluss linked process	rocess: subsequent before first d; gered we pooling re orches- eficial; might tered or s	Continuou more integ a connect steady sta only small (surge) tar orchestrat have; long closed pro	us process: grated case of ed process; ate flow; intermediate hks; software tion is a must- run times; ocessing	Flow-through continuous pro further integrat with complete state flow. All b elute steps are with flow throu Molecule does stop – ideally n mediate (surge	ocess: ted case steady oind and replaced ugh mode. not o inter- tanks

Resolute[®] Resolute BioSMB PD RCC MU

Resolute[®] **BioSC Pilot**

Cascade	Resin (MCC Connected Process)	Sartobind®
Number of steps	3	3
Final yield [%]	83	86
DNA [ppb]	<3	<3
HCP [ppm]	3	30
HMW [%]	0.2	0.3
Total process time [h]	10.4	4.0
Av. Productivity [g/h]	179	465

Connecting the process and using MCC or parallel batch multiplies productivity or reduces costs Comparable purity and yield Lower footprint

Sartobind[®] S (1.6 L @ 500 g/L)

Clarified harvest

 \checkmark

Sartobind[®] Rapid A (9.6 L @ 45 g/L)

3×3.2 L membrane

Conclusion

Due to their inherent structural characteristics, Sartobind[®] Rapid A membranes offer unique possibilities for fully membrane-based ultra-fast mAb purification processes

- Sartobind[®] membranes are ready-to-use and enable a one-batch, one-device manufacturing strategy
- Highly competitive DBC
- Short cycle time (< 30 min)
- High number of cycles per batch (up to 150)
- Double flow-through polishing with Sartobind® Q|S Full membrane process with ultra-high productivity
- (3x compared to connected resin-based process)
- The innovative agarose platform is scalable and robust for a wide variety of mAbs with limited back-pressure at large scale
- Availability of modular cassette format enables scaling to large production processes

Abbreviations:

ASAP: Accelerated Seamless Antibodies Purification, EASY: Full flow-through process, ILC: Inline Conditioning, ILD: Inline dilution, MoBiDiK: Modular Bioproduction, disposable and continuous, MCC: Multi-column chromatography, RCC: Rapid cycling chromatography, UO: Unit operation

1 Grünberg et al. (2022). Membranes.

2 F. Schmitz et al. (2023). Integrated double flow-through purification of monoclonal antibodies using membrane adsorbers and single-pass TFF. Biochemical Engineering Journal 195.