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Abstract 
There is a growing interest in the biopharmaceutical industry to improve the understanding of growth kinetics in mammalian 
cell-based processes, particularly for monoclonal antibody (mAb) production. By applying a first principle or mechanistic 
models as a new approach, mathematical and complex fundamental relationships can be described within the cell and  
between the cell and environmental variables, e.g., between a glucose concentration and the growth rate.

While mechanistic models can help understand the process better and determine key parameters like substrate limiting  
concentration, virtual representations of the process in the form of digital twins will enable the simulation of experiments in 
silico, reducing the process development workload and time and supporting decision-making.

Here, we present a study that focuses on building a mechanistic model to determine the growth kinetics for a CHO-based 
process producing a mAb. After fitting the model with calibration data, the model was applied to an independent validation 
data set. In parallel, an artificial neuronal network approach was used to determine the specific productivity. Both modeling 
approaches were merged to produce a hybrid model to predict the overall product concentration. This hybrid model would 
form the basis of the next step: a digital twin.
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Introduction 
The biopharmaceutical market is a fast-growing market that, 
in 2020, generated 192.46 billion USD and is expected to 
grow to a 326.3 billion USD business by 2026.1  Today, 5 of the 
top 10 most sold pharmaceuticals are biopharmaceutical 
products. With a total revenue of 20.4 billion USD, the 
top-selling drug in 2020 was Humira, a biopharmaceutical 
from AbbVie.2

Despite being such a big business and the complexity of the 
products, the production processes for biopharmaceuticals 
are poorly monitored and not perfectly understood.  
Therefore, the FDA encouraged manufacturers to use more 
process analytical technology (PAT) tools by issuing the “PAT — 
A Framework for Innovative Pharmaceutical Development, 
Manufacturing, and Quality Assurance” in 2004.3 Although 
the implementation of PAT is more challenging in the  
biopharma industry compared to the chemical or petroleum 
industry,4 the use of PAT for mAb production is gaining  
momentum.5

While PAT addresses the better controllability of bioprocesses, 
the second aspect of better process understanding is only 
partially met with PAT. One way of getting a better under-
standing can be achieved by first principle or mechanistic 
models. These models describe mathematically fundamental 
relationships, e.g., between a glucose concentration and the 
growth rate. 

Some of the discoveries made in this field are more than  
100 years old,6 and the basic relationship between substrate 
and growth was already described in 1949 by Jacques Monod.7 
It took another 43 years for the first hybrid model and an   
additional 17 years to publish a biotechnology application  
for a digital twin.8 While mechanistic models can help better 
understand the process and determine key parameters like 
substrate limiting concentration, digital twins enable the  
simulation of experiments in silico, reducing the workload 
and time for process development.

In the present study, we focused on building a mechanistic 
model to determine the growth kinetics for a CHO-based 
process producing a mAb. After fitting the model with  
calibration data, the model was applied to an independent 
validation data set. In parallel, an artificial neuronal network 
approach was used to determine the specific productivity. 
Both modeling approaches were merged to produce a  
hybrid model to predict the overall product concentration. 
That hybrid model would be the basis of the next step:  
a digital twin.
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Materials and Methods
Model for Process Simulation (Biosimulation Library)
For this study, an ordinary differential equation (ODE)-based 
approach was selected using an in-house developed Python 
library (a version of this bioreactor modeling library can now 
be found in Cell Insights by Umetrics® Studio). The model is 
an unstructured, unsegregated model. More information on 
the different types of models can be found in this review 
paper.8 The structure of models behind the library can be 
broadly divided into three parts: 

1. A first-principles cell balance model (growth/death)
2. A hybrid metabolic evolution model
3. A hybrid productivity (titer) model

The first part tracks the population of cells as they move 
through three phases: live cells, dead cells, and lysed cells. 
Mathematically, the evolution of the live, dead, and lysed 
cells is tracked using ODEs as follows: 

=( (dxv

dt ueff -ud-
Fb

V  × xv

= ( (dxd

dt kl+
Fb

Vud × xv-  × xd

=
dx1

dt
Fh+Fb

Vkl × xd-  × xl

where xv is the viable cell density (VCD), xd is the dead cell 
density, and xl is the lysed cell density (concentration of lysed 
cells). Fb is the bleed rate, Fh is the harvest rate, and V is the 
reactor volume. ueff , ud , and kl are the effective growth,  
effective death, and lysing rates, respectively.

The second part focuses on the metabolites. Metabolites  
are tracked in the model using basic mass balances and 
piecewise constant (trained from data) metabolic consumption 
rates. The primary function of metabolites in the model is to 
consider them as substrates, quadratic factors, or inhibitors. 
This role might depend on the biology of the given cell line. 
The cell line used was CHO DG44 expressing a mAb (IgG1). 

The third part is a feed-forward neural network with 2 hidden 
layers (128 and 16 nodes, respectively) and an exponential 
linear unit (ELU) activation function. Based on batch evolution 
data of available parameters (VCD, cell viability, metabolites, 
etc.), the network predicts an average titer production rate 
(total titer/total biomass) for the batch. It was trained using a 
node dropout probability of 0.3, L1 loss, and Adam optimizer 
with a learning rate of 0.001.

Process Analytics
Process analytics were performed during the course of the 
cultivation process. The VCD and viability were determined 
using a Vi-CELL™ XR* or Cedex HiRes®* . The titer was deter-
mined using an in-house HPLC method. Metabolites, including 
glucose and lactate, as well as blood gases, metal ions, and 
osmolality, were determined using a Nova BioProfile® FLEX*. 
Metabolites were tracked using basic mass balances and 
piecewise constant (trained from data) metabolic consumption 
rates. The primary function of metabolites in the model is for  
inclusion as substrates, quadratic factors, or inhibitors as  
appropriate for the biology of the given cell line.

*Vi-CELL™ XR is a registered trademark of Beckman & Coulter. Cedex HiRes® is a registered trademark of  Roche. Nova BioProfile® FLEX is a registered trademark of Nova Biomedical
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Results
Calibration Data
The processes were run in an Ambr®15 system (Sartorius, 
Göttingen) with an initial working volume of 14 mL. Design  
of experiments (DoE) approach was used, focusing on feed 
and media optimization.

These experiments were used to calibrate the model.  
The varied factors are presented in Table 1.

Factor Low High

Start media Media_B1 Media_B2 

Feed media Media_F1 Media_F2

Relative feed amount to 
initial working volume

3.328% 5.120%

Table 1: Factors Varied to Calibrate the Model

In addition, a third feed (Media_F3) was added as a percentage 
of either Media_F1 or Media_F2 (1.2%). All feeds were added 
every other day starting day 1 post-inoculation. To ensure 
sufficient glucose was present in the cultures; glucose was 
added on demand when it fell below 4g/L to a target  
concentration of 8g/L.

The temperature was tightly controlled at 37 °C with a  
temperature shift when the VCD reached 15 × 106 cells/mL  
or day 5 for batches. Based on the temperature control of the 
bioreactor system, a complete set of 12 bioreactors was shifted 
to 33 °C. The bioreactors used did not have a temperature 
probe. Consequently, the exact time when the individual  
bioreactor reached the new target temperature was unknown. 
This introduces some error into the modeling approach. 
Table 2 shows all batches included in the calibration model.

Table 2: Overview of Processes Used for Model Fitting (Calibration Data)

Culture ID Inhibit Media Temperature Shift [days] Inhibit Feed Feed Media Fractional Reduction Control | Test

1 1 5 1 0 Control

2 1 5 1 0,15 Test

3 1 5 1 0,25 Test

4 1 5 1 0,35 Test

5 1 5 0 0 Control

6 1 5 0 0,15 Test

7 1 5 0 0,25 Test

8 1 5 0 0,35 Test

9 0 5 1 0 Control

11 0 5 1 0,25 Test

12 0 5 1 0,35 Test

17 1 5 1 0 Control

18 1 5 1 0,15 Test

19 1 5 1 0,25 Test

20 1 5 1 0,35 Test

21 1 5 0 0 Control

22 1 5 0 0,15 Test

23 1 5 0 0,25 Test

24 1 5 0 0,35 Test

25 0 5 1 0 Control

26 0 5 1 0,15 Test

27 0 5 1 0,25 Test

28 0 5 1 0,35 Test

29 0 5 0 0 Control

30 0 5 0 0,15 Test

31 0 5 0 0,25 Test

32 0 5 0 0,35 Test 
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When looking at the overall variation with the data on VCD 
and titer (Figure 1), it seems that the media has a stronger  
effect than the feed. This is an important consideration in an, 
e.g., inhibition effect. The temperature was another strong  
effect since the VCD stopped increasing after the tempera-
ture was shifted to 35 °C at day 5.

Data Exploration Calibration
The first part of finding a process model is ensuring the data 
is fit for purpose. A good model base consists of data with a 
high assignable variation and little unstructured variation or 
noise. Effects on the cell culture that are not varied in a 
meaningful way cannot be easily modeled since they depict 
one-time events. Therefore, all batches were reviewed and 
excluded if process deviations occurred during the cell  
culture run (e.g., issues with CO2 gas flow). The selection of 
batches to exclude was made by our collaboration partner 
Merck. It is important to review the batches before starting 
the actual modeling work to make sure the models are not  
biased.

Figure 1: Variation of Control Experiments for Calibration

Note. Coloring is displayed according to media for left plots and feed for right plots. 

XV
ar

 (T
ite

r [
g/

L]
)

0

0.2

0.4

7

XV
ar

 (T
ite

r [
g/

L]
)

0

0.6

XV
ar

 (V
C

D
 [1

06
 c

el
ls

/m
L]

)

0

5

10

0

XV
ar

 (V
C

D
 [1

06
 c

el
ls

/m
L]

)

0

15

20

25

5

10

0 31 2 4 75 6 8 119 10 1412 13
Day (smoothed and shifted)

15

20

25

31 2 4 75 6 8 119 10 1412 13
Day (smoothed and shifted)

0.8

1.2

0.2

0.4

7

0.6

0.8

8.57.5 8 9 10.59.5 10 11 12.511.5 12 1413 13.5
Day (smoothed and shifted)

1.0

1.2

8.57.5 8 9 10.59.5 10 11 12.511.5 12 1413 13.5
Day (smoothed and shifted)

1.0

1.4

VCD [106 cells/mL] – Data to Analysis Batches (M1, PLS) VCD [106 cells/mL] – Data to Analysis Batches (M1, PLS)

Media_B1
Media_B2

Media_F1/Media_F3
Media_F2/Media_F3

Titer [g/L] – Data to Analysis Batches (M1, PLS) Titer [g/L] – Data to Analysis Batches (M1, PLS)

Media_F1/Media_F3
Media_F2/Media_F3

Media_B1
Media_B2



6

Model Result
After representative data was identified, the modeling  
process began. This is an iterative approach and needs several 
cycles until a good model is found. Typically, each cycle of 
model fitting contains either more calibration batches or 
more model parameters. In this sense, a good model is a 
model with high accuracy for VCD (measured using the root 
mean squared error [RMSE]).

The first model build contained only the valid control pro-
cesses and a rudimentary model structure. The objective of 
this first model was to establish the baseline values for the 
maximum growth rate, the death rate, the toxicity, the lysing 
rate (used to express toxicity by an increase in death rate), 
and the biomaterial (relative accumulation of a set of unmea-
sured materials expressed by viable cells that inhibit growth). 
The inhibition based on biomaterial is the threshold that 
these unmeasured materials begin to inhibit the growth rate. 
In fed-batch, the biomaterial hidden state is equivalent to the 
cell hours integral viable cell density (iVCD).

Once these basic growth parameters were narrowed down, 
the other calibration processes were included for model fit-
ting. New model parameters to be included were found by 
searching for processes that differ the most from the true 
VCD performance and the model prediction. Differences for 
those processes (e.g., earlier temperature shift or higher start 
osmolality) were included as new model parameters, and the 
model re-fitted. 

Table 3:  Model Parameter Values After Fitting Based on  
All Calibration Runs

Parameter Role Type Value

primary_growth_rate Growth parameter Growth parameter 0.705

primary_death_rate Growth parameter Growth parameter 0.039

toxicity Growth parameter Growth parameter 0.002

lysing_rate Growth parameter Growth parameter 2.234

Biomaterial Growth parameter Inhibitor 170.942

Inhibit feed Independent Inhibitor 0.969

Inhibit Media Independent Inhibitor 0.849

Cum_Osmo Independent Inhibitor 2696.566

Ammonia Metabolite Inhibitor 7.518

Glucose Metabolite Substrate 0.248

Temperature Independent Quadratic 37 ± 0.787

Note. Used file [20211028_config_sim_all_batches_yaml]

As a first confirmation of the plausibility of the model,  
we compared some of the relevant model coefficients to  
literature values. For the growth rate (µ) for CHO cells,  
Ozturk et al. (2005) valued in the range of 0.3 and 1.4/day.10 
Ritter (2009) reported μ between 0.035/h and 0.040/h,  
depending on the media selected.11 In this study, the  
maximum growth rate was determined to be 0.705/day.

For the temperature influence, Yoon et al. (2005) reported a 
decrease of the μ from 0.027 to 0.011 when changing the 
temperature from 37 °C to 32 °C.12 Bedoya-López et al  
identified a drop in μ from 0.021 to 0.005 when shifting the 
temperature from 37 °C to 30 °C.13 In the presented case, 
growth starts to decrease when the temperature is lower 
than 36.2 °C (37 °C – 0.8 °C).

For ammonia, an inhibition was reported starting with  
5 mM NH4Cl and an IC-50 of 33 mM.14 The final model in  
this publication shows an ammonia-based inhibition when 
concentrations exceed 7.5 mM.

The result of the final model is given in Figure 2. The root 
means squared error for viable cell density across all data 
points was 20 × 105 cells/mL. Figure 2 shows the VCD profile 
over 14 days. The fit of the initial growth phase is excellent for 
all of the cultivations, but the value predicted by the model 
was less accurate for some batches just after the temperature 
shift. This was especially true for batches 3, 4, 5, and 28; one 
reason might be that the exact time-point of the temperature 
shift is unknown. The temperature is controlled for all  
12 bioreactors, and none of the vessels have an individual 
temperature probe. So when the temperature set-point is 
changed, it takes a certain time until each and every bioreactor 
reaches the new target temperature. Since the temperature 
has a strong effect, a slightly delayed temperature shift  
(e.g., based on slightly different thermodynamics) will  
contribute to a model mis-fit (higher true values compared  
to the model predictions).

In addition, the model was not able to capture the death 
phase for some batches (e.g., 1 – 8 and 18,19). The reason 
might be that the processes had different death kinetics  
that can not be modeled with the current model structure 
applied in this study. Therefore the model tried to fit average 
death kinetics. To overcome this problem, the model could 
be augmented by death-promoting or death-preventive 
model terms, similar to growth inhibition by a toxic by-product. 
We tested an ammonia-dependent death promotion and 
achieved slightly better results for the death phase. The  
improvement was not yet significant, as a proper optimization 
algorithm is missing in the HSSM library (data not shown).
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Figure 2: Simulation Result for Calibration Batches (Viable Cell Density Result)  

Figure 3: Simulation Result for Calibration Batches (Viability) 
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The main focus of this study was to model the initial growth 
phase, with more emphasis on the first two-thirds of the  
process. This decision was made as the initial process phase is 
typically the foundation for a process resulting in high titer and 
correct quality. Interestingly, the viability was modeled well  
in most of the cases (Figure 3). 

Table 4: Validation Batches  

Primary ID Inhibit Media Temperature Shift [days] Inhibit Feed Setpoint Glucose Strategy [g/L]

Validation 01 1 3 0 Setpoint_III If < 4 or > 8

Validation 02 1 3 0 Setpoint_IV-10% If < 4 or > 4

Validation 03 1 3 0 Setpoint_IV-8% If < 4 or > 4

Validation 04 1 3 0 Control If < 4 or > 8

Validation 05 1 3 1 Setpoint_III If < 4 or > 8

Validation 06 1 3 1 Setpoint_IV-10% If < 4 or > 4 

Validation 07 1 3 1 Setpoint_IV-8% If < 4 or > 4 

Validation 08 1 3 1 Control If < 4 or > 8 

Validation 09 0 3 0 Setpoint_III If < 4 or > 8 

Validation 10 0 3 0 Setpoint_IV-10% If < 4 or > 4 

Validation 11 0 3 0 Setpoint_IV-8% If < 4 or > 4 

Validation 12 0 3 0 Control If < 4 or > 8 

Validation 13 0 3 1 Setpoint_III If < 4 or > 8 

Validation 14 0 3 1 Setpoint_IV-10% If < 4 or > 4 

Validation 15 0 3 1 Setpoint_IV-8% If < 4 or > 4 

Validation 16 0 3 1 Control If < 4 or > 8 

Validation 25 1 3 0 Setpoint_III If < 4 or > 8 

Validation 26 1 3 0 Setpoint_IV-10% If < 4 or > 4 

Validation 27 1 3 0 Setpoint_IV-8% If < 4 or > 4 

Validation 28 1 3 0 Control If < 4 or > 8 

Validation 29 1 3 1 Setpoint_III If < 4 or > 8 

Validation 30 1 3 1 Setpoint_IV-10% If < 4 or > 4 

Validation 31 1 3 1 Setpoint_IV-8% If < 4 or > 4 

Validation 32 1 3 1 Control If < 4 or > 8 

Validation 33 0 3 0 Setpoint_III If < 4 or > 8 

Validation 34 0 3 0 Setpoint_IV-10% If < 4 or > 4 

Validation 35 0 3 0 Setpoint_IV-8% If < 4 or > 4 

Validation 36 0 3 0 Control If < 4 or > 8 

Validation 37 0 3 1 Setpoint_III If < 4 or > 8 

Validation 38 0 3 1 Setpoint_IV-10% If < 4 or > 4 

Validation 39 0 3 1 Setpoint_IV-8% If < 4 or > 4 

Validation 40 0 3 1 Control If < 4 or > 8 

This could be an indication that if the model is used for  
simulating new conditions, conditions resulting in lower  
viability will be captured. In addition, a low VCD at the late 
stage of the process is considered less critical compared to  
a low viability.15 As a consequence, we favored models that 
better captured the initial process phase and were able to 
sufficiently monitor the viability. As a next step, the model 
was applied to the validation data.
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Another difference was that the temperature shift was  
performed on day 3 instead of day 5. This resulted, on aver-
age, in lower VCD values and approximately half the  
product concentration at the end of the process. An over-
view of the validation batches and the feed profiles for each 
set point are given in Tables 4 and 5 respectively.

Validation Data
In a second phase, different feeding strategies were  
applied to the same core process. Much higher feed 
amounts were selected to bring the process to the limit.  
The osmolality values, in particular, were much higher  
than the calibration data. 

Table 5: Profile for Different Set Points    

Conditions Setpoint_III Setpoint_IV-10% Setpoint_IV-8% Controls [%]

Day_0     

Day_1 3,70% 4,86% 4,86% 5,12

Day_2 3,70% 10,00% 8,00%  

Day_3 3,70% 10,00% 8,00% 5,12

Day_4 3,70% 0,00% 0,00%  

Day_5 3,70% 0,00% 0,00% 5,12

Day_6 3,70% 0,00% 0,00%  

Day_7 3,70% 0,00% 0,00% 5,12

Day_8 3,70% 1,10% 1,10%  

Day_9 3,70% 1,37% 1,37% 5,12

Day_10 3,70% 10,00% 8,00%  

Day_11 3,70% 10,00% 8,00% 5,12

Day_12 3,70% 10,00% 8,00%  

Day_13 3,70% 8,53% 8,53% 5,12

Day_14     

F3 Feed percentage                                                                                              0.60% 
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Data Exploration Validation
Like the calibration data, the VCD and titer profiles were  
assessed. Compared to the calibration, the temperature shift 
was performed earlier, and consequently, lower VCD values 
were reached. In addition, the media appear to have a bigger 
influence on the maximum VCD for the validation data.  
When it comes to productivity, the validation controls resulted 
in half the final titer values compared to the controls of the 
calibration data set (Figure 4).

Figure 4: Control Experiments for Validation Data Set 

Note. Coloring is displayed according to media for left plots and feed for right plots. 
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When looking at all processes with a inhibit feed value of  
1, 6 out of 8 process conditions are listed in Table 6 as not 
well predicted. These observations can indicate that the  
inhibition effect of the feed is overestimated by the model.  
In addition, the model mismatch seems more likely to happen 
in combination with the media that shows no inhibition.  
This phenomenon was already partially observed in the data 
exploration phase, indicating that there was a strong media 
effect. However, this was not further broken down into a  
potential interaction between feed and media.

Enhancing the existing calibration data set with the controls 
of the validation data could improve the results by creating a 
more realistic estimation of the media or feed effect and  
providing a broader estimate of the interaction between feed 
and media. The data of just one set of bioreactors may not be 
adequate to capture the true effect of the media or feed.

Table 6: Validation Batched Not Well Predicted During Initial Growth Phase    

Batch Inhibit Media Inhibit Feed Setpoint Glucose Strategy [g/L]

Validation-05 1 1 Setpoint_III If < 4 or > 8  

Validation-08 1 1 Control IIf < 4 or > 8  

Validation-13 0 1 Setpoint_III If < 4 or > 8  

Validation 14 0 1 Setpoint_IV 10% If < 4 or > 4  

Validation 15 0 1 Setpoint_IV 8% If < 4 or > 4 

Validation 16 0 1 Control If < 4 or > 8 

Validation 29 1 1 Setpoint_III If < 4 or > 8  

Validation 32 1 1 Control If < 4 or > 8  

Validation 37 0 1 Setpoint_III If < 4 or > 8  

Validation 38 0 1 Setpoint_IV 10% If < 4 or > 4 

Validation 39 0 1 Setpoint_IV 8% If < 4 or > 4  

Validation 40 0 1 Control If < 4 or > 8  
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Figure 5: Simulation Result for Validation Batches (Viable Cell Density Result)  

Figure 6: Simulation Result for Validation Batches (Viability) 
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Therefore, we decided to use the overall qP per batch which 
reduced the impact of the inaccurate VCD measurement. 
Figure 7 shows the results for the calibration data. In general, 
the trend was followed by the prediction with the neural  
network. Once the model structure was defined, it was applied 
to the validation data set, meaning that lower qP values are 
predicted as such and higher qP as higher predicted values 
(Figure 8). Considering the qP was lower in the validation 
data set, that is a good confirmation that the over relations 
between process performance and qP is stable and well- 
established with the artificial model. 
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Titer Prediction
The neural network for the titer prediction used data from the 
mechanistic model (e.g., simulate values, biomaterial) and the 
inputs for the different cultivations (e.g., the media or feed 
used). In a first iteration, the cell-specific productivity (qP) at 
different time points was the focus for prediction. However, 
the calculation of the qP is dependent on very accurate  
product quantification with HPLC and the much less  
accurate VCD determination with a dye exclusion method. 
Consequently, the calculated qP values were inaccurate or 
unrealistic when calculated between time points. 

Figure 7:  Result of qP Values  
for Calibration Data  

Figure 8:  Result of qP Values 
for Validation Data    
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Conclusion
In this study, an unstructured, unsegregated mechanistic 
model for a bioprocess producing a mAb was developed.  
The experiments to build the model were performed with 
two different media, two different feeds, and four variations in 
the amount of feed added. The best model provided a good 
representation of the calibration data. The model was then 
tested against an independent validation data set containing 
a much higher feeding volume, resulting in higher osmolality 
measurements. In addition, the temperature shift was  
performed two days earlier in the validation experiment.  
The model predictions were less accurate for the validation 
set mainly due to a lower feed inhibition effect. Building  
the model over both data sets can help improve the model's 
robustness, which would also require a new independent  
validation data set. 

The second phase of the modeling approach was the  
implementation of an artificial neural network to predict  
the average specific productivity (qP). The artificial neural 
network represents a data-driven or statistical model.  
The data-driven model is the second part of a hybrid model. 
The result of implementing the data-driven artificial neural 
network shows that the input from the mechanistic under-
standing led to a reliable prediction of the qP, even though 
the qP was generally lower for the validation data set.  
The next logical step would be to combine both parts to  
create a digital representation of the process, then run an  
optimization function to find the best compromise between 
growth-promoting and productivity-promoting conditions.

  To learn more about Cell Insights by Umetrics® Studio, visit 
www.sartorius.com/cell-insights  

  Case Study "Model-based intensification of CHO cell cultures: one-step strategy from fed-batch to perfusion" 
www.biorxiv.org/content/10.1101/2022.05.19.492635v1
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10.  Cell Culture Technology for Pharmaceutical and  
Cell-Based Therapies (Biotechnology and Bioprocessing), 
Ozturk et al, 2005

11.  Charakterisierung tierischer Zellkulturen anhand einer 
Quantifizierung intrazellulärer Metaboliten aus dem  
Zentralstoffwechsel, J. Ritter, 2009

12.  Adaptation of Chinese hamster ovary cells to low  
culture temperature: Cell growth and recombinant  
protein production, Yoon et al, 2005

13.  Effect of Temperature Downshift on the Transcriptomic 
Responses of Chinese Hamster Ovary Cells Using  
Recombinant Human Tissue Plasminogen Activator 
Production Culture, Bedoya-López et al, 2016

14.  Effects of ammonia on CHO cell growth, erythropoietin 
production, and glycosylation, Yang et al, 2000

15.  Extracellular sialidase and glycosidases decrease sialic 
acid, cell viability can be a critical factor in final sialic acid 
levels, Gramer et al, 1993
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