SVISCISVS

Application Highlight

June, 2022

Keywords: UniSart[®] Membrane, Lateral Flow Assay, Surfactants

Surfactants Selection Guide for Lateral Flow Assays

Dr. Shuo Liang Sartorius Stedim Biotech GmbH, August-Spindler-Strasse 11, 37079 Goettingen

Correspondence E-Mail: shuo.liang@sartorius.com

Introduction

Lateral flow assays (LFA) are a type of immunographic assay widely used for the rapid detection of pathogens, toxins, environmental contaminants, etc. Their ease of use and accuracy make these assays well suited for the point-of-care market. For purposes of this study, three lateral flow tests were selected. The effects of surfactants on test performance were demonstrated by adding different surfactants (surface active agent) during the pre-treatment of sample pads.

1. Classification of surfactants and their function in lateral flow assay:

Figure 1: Different forms of surfactants (Surface Active Agent)

As listed in Table 1 the following surfactants were selected. All surfactants were used as additives in pre-treatment of samples pads of the lateral flow tests.

 Table 1. Overview of surfactants used for this study

Commercial Name	Structure	Туре	GHS	HLB	Application
Tween 20 (Polysorbate 20) но	$(\sim)_{Z}^{\circ} (\sim)_{y}^{\circ} (\sim)_{X}^{\circ} (\sim)_$	Non-ionic	(1)	16.7	Gentle surfactant and commonly used in LFA
Brij 35	C12 OH	Non-ionic	(!)	16.9	Performance optimization ¹
Brij 58	C16	Non-ionic		15.7	Performance optimization
Tween 60 но (Polysorbate 60)	$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	Non-ionic	(1)	14.9	Gentle surfactant
Tergitol [™] type NP-40 _c	,H ₁₉ , CH (° →)OH	Non-ionic		17.8	Background clearance and conjugate pad release
IGEPAL®CA-630	H ₃ C J ₃ C H ₃ C H ₃ C CH ₃	Non-ionic		13.4	Background clearance and conjugate pad release
CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1- propanesulfonate) Ho		Zwitterionic	الله الله المراجع	/	Protein solubilization
SDS (sodium dodecyl sulfate)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Anionic		40.0	Commonly used in protein chemistry

HLB: hydrophilic-lipophilic balance, high value hydrophilic (water soluble), low value hydrophobic (oil soluble)

2. Effect of different surfactants on the performance of UniSart® diagnostic membranes

2.1 hCG pregnancy test: an example for impacts of surfactants on signal intensity and background clearance

The hCG test is known to be robust and highly reproducible. Thus, it was selected to demonstrate the effects of surfactants on signal intensity and background clearance. The surfactants listed in Table 1 were applied in three categories of concentration: Low concentration: $\leq 0.1 \%$ (w/w) or (v/w), moderate concentration: 0.2-0.5 % (w/w) or (v/w), and high concentration: $\geq 0.5 \%$ (w/w) or (v/w). The half-strips assay was used to simplify the test process. This method is commonly used for the initial screening of buffer conditions (Table 2).

 Table 2. Summary of test results of hCG test with different surfactants

Criteria	Color	Description				
Bad		No signal/strong background				
Neutral		Low signal				
Good		Strong signal/clear background				

		Test line and control line signal (naked eye detection)								
UniSart® Membrane	Surfactant Concentration	Tween 20	Brij 35	Brij 58	Tween 60	Tergitol™ type NP-40	IGEPAL [®] CA-630	CHAPS	SDS	
CN95 backed	Low									
	Moderate									
	High									
CN110	Low									
backed	Moderate									
	High									
CN140	Low									
unbacked	Moderate									
	High									
CN140	Low									
backed	Moderate									
	High									
CN150	Low									
backed white	Moderate									
	High									
CN150 backed clear	Low									
	Moderate									
	High									
CN180 backed	Low									
	Moderate									
	High									
CN180DX	Low									
backed	Moderate									
	High									

Low concentration: ≤ 0.1 %; Moderate concentration: 0.2-0.5 %; High concentration: ≥ 0.5 %

For non-ionic surfactants, the application of Brij 35, Brij 58, Tergitol[™] type NP-40, and IGEPAL[®] CA-630 generated good test performance at all ranges of concentration tested. Tween 20 could be used at low and moderate concentration, whereas Tween 60 is only recommended at moderate concentration. At high concentration, both Tween surfactants resulted in false positive signals. A possible explanation would be that the high concentration of Tween surfactants adsorbed on the surface of gold-nanoparticles and disrupts the adsorption of conjugate-antibodies². The zwitterionic surfactant CHAPS showed positive effects on performance, but only at higher concentration. The anionic surfactant SDS did not contribute to signal intensity or background clearance like other surfactants. The denaturing nature of proteins by SDS could explain these observations. Tergitol[™] type NP-40 and IGEPAL[®] CA-630 were selected as replacement of Triton X-100.

2.2 The flu A test was chosen to demonstrate the effect of surfactants on non-specific binding

The application of moderate concentration (0.25 % (w/w)) of Tween 20 revealed a good test performance in the hCG test. However, using the same concentration of Tween 20 in the flu A assay resulted in a false positive signal. In the flu A test system, the latex beads with a 400 nm diameter was conjugated by manufacturer's protocol. The latex beads with such large diameter might cause aggregation or non-specific binding during the test running. Potential reasons for nonspecific binding (false positive) are illustrated in Figure 2B. Utilizing Tergitol[™] type NP-40 at moderate concentration, could solve the problem of non-specific binding and improve the test readout (Figure 2C).

Figure 2. Effect of surfactants on flu A test

С

Printing buffer: 5 mM Borate, 150 mM, NaCl, 1 % sucrose, pH 8.2 Sample pad pre-treatment buffer: 100 mM Tris-buffer, 0.5 % BSA, 0.25 % surfactants, pH 8.0

Running buffer: 20 mM Tris-buffer, 150 mM NaCl, 0.05 % BSA, pH 8.2

Potential reasons for non-specific binding

False positive signals T20: Tween 20; NP-40: Tergitol™ type NP-40

5

2.3 Protein G and protein A test: an example for surfactants' effect on the interaction of carrier proteins and antibodies

Protein G and protein A are commonly used in lateral flow assays to enhance the sensitivity. Both proteins interact with the Fc fragment of the antibody. It allows for better binding of the detection protein to the membrane surface. In such test, protein G/A-antibody complex is immobilized on the nitrocellulose membrane via protein G/A. Therefore, analysis of protein G/A on membrane immobilization and their interaction with antibodies are important for the optimization of the assay. Here, the effects of surfactants on protein G/A and their antibody interaction were evaluated (Table 3). The concentration of surfactants used 0.25 % (w/w) or (v/w) was adapted from the hCG test due to the good performance.

Construction of protein G and protein A test

- High test line intensity = strong interaction between protein G/A and antibody
- Low test line intesnity = weak interaction between protein G/A and antibody

Printing buffer for protein G: 100 mM Citrate, pH 5 Printing buffer for protein A: 5 mM Borate, 150 mM NaCl, 1 % sucrose, pH 8.2 Sample pad pre-treatment buffer: 100 mM Tris-buffer, 0.5 % BSA, 0.25 % surfactants, pH 8.0 Running buffer: 20 mM Tris-buffer, 150 mM NaCl, 0.05 % BSA, pH 8.2

Table 3. Summary of test results for protein G/A and antibody-interaction with different surfactants

	Quantitative Signal Intensity (a.u.)											
Unisart® Membrane	Tween 20		Brij 35		Brij 58		Tween 60		Tergitol™ type NP-40		IGEPAL® CA-630	
	Protein G	Protein A	Protein G	Protein A	Protein G	Protein A	Protein G	Protein A	Protein G	Protein A	Protein G	Protein A
CN95 backed	+++++	+++++	++	+++++	++++	+++	+++++	++++	+	+	+++	++
CN110 backed	+++++	+++++	+++	++++	++++	++	+++++	+++++	++	+	+	+++
CN140 unbacked	++++++	+++++	++++	++++++	+++	++++	+++++	+++	+	+	++	++
CN140 backed	++++++	+++++	+++	++++++	++++	++++	++++	+++	+	++	++	+
CN150 backed white	++++++	+++	+++	+++	++++	++++	+++++	+++++	+	++	++	+
CN150 backed clear	++++++	++++	++++	++++	+++	+++	+++++	++++++	+	+	++	++
CN180 backed	+++++	+++++	++++++	+++++	+++	++	++++	+++	+	+	++	++++
CN180DX backed	++++	+++++	++++++	+++++	+++++	+++	++	++++	+	+	+++	++

+++++ : strongest interaction, + : weakest interaction

Conclusion

The effect of surfactants on test performance varied depending on the assay and the membrane, but also the type and concentration of surfactant used. Production costs must be considered if using a surfactant at high concentrations. It is therefore recommended to screen a variety of surfactants and concentrations to ensure the best performance.

Additional reading:

- 1. L. Zeng et al., Development of ic-ELISA and lateral-flow immunochromatographic strip for detection of vitamin B2 in an energy drink and vitamin tablets, Food and Agricultural Immunology, (2018) 29:1, 121-132.
- 2. Y. Zhao et al., Adsorbed Tween 80 is unique in its ability to improve the stability of gold nanoparticles in solutions of biomolecules, Nanoscale (2010) 2, 2114-2119.
- 3. L. Zhan et al., Development and optimization of thermal contrast amplification lateral flow immunoassays for ultrasensitive HIV p24 protein detection, Microsystems & Nanoengineering (2020) 6:543.
- 4. Global Lateral Flow Assays Market By type, By Technique, By Sample Type, By Application, By End User, By Regional Outlook, Industry Analysis Report and Forecast, 2021-2027.
- 5. G.A. Posthuma-Trumpie et al., Lateral flow (immune)assay: its strengths, weaknesses, opportunities, and threats. A literature survey, Anal Bioanal Chem (2009) 393:569–582
- 6. Y. Liu et al., Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis, ACS Nano (2021) 15 (3), 3593-3611
- 7. F. Di Nardo et al., Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. Sensor (2021) 2921, 21, 5185

Germany

Sartorius Lab Instruments GmbH & Co. KG Otto-Brenner-Strasse 20 37079 Goettingen Phone +49 551 308 0

USA

Sartorius Corporation 565 Johnson Avenue Bohemia, NY 11716 Phone +1 631 254 4249 Toll-free +1 800 635 2906

For additional information visit www.sartorius.com