Robustness Study for Virus Retentive Filtration of Plasma Derivatives

Dr. Benjamin Schneider, Anika Manzke
Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, D-37079 Goettingen

1. Introduction

Plasma products such as IVIG, fibrinogen and factor VIII are historically derived from human plasma for which current regulatory guidelines such as the Annex A of the “WHO Technical Report Series No. 954” and the “Guideline on plasma-derived medicinal products” from the EMA request at least two orthogonal steps for the inactivation and/or removal of viruses.

One method is virus filtration, which utilizes virus removal membranes having nominal pore sizes of 20 nm for effective size-exclusion of both small non-enveloped and large enveloped viruses. Virus removal is usually demonstrated in spiking studies, where relevant viruses are added deliberately to the process stream ahead of the relevant unit operation.

Besides normal spiking studies, the industry tends to perform additional robustness studies, proving to the authorities the effectivity of the virus removal step when deviating from the typical process parameters. However, investigations have recently discovered when deviating from the typical process parameters, with some virus removal membranes, virus breakthrough can occur more likely.

This poster will summarize the results of different robustness studies looking at challenging process parameters potentially impacting virus retention.

2. Experimental details

Model Virus
• Pseudomonas aeruginosa bacteriophage PP7
• Model virus for small viruses
• Size ~ 25 nm, pH 4.5

Filter
• Commercial available virus filter (Virosart® HC)
• Down-scale device: 5.0 cm²

3. Flow decay

In total, two filtrate fractions were taken at 25% and 90% flow decay. The filtration was performed with 10 g/L IVIG in 20 mM KPI buffer, pH 7.2 at constant pressure of 2.0 bar with Virosart® HC lab modules (5.0 cm²). No virus breakthrough was detected under any conditions and replicates (N=4).

4. Pressure

4.1 Low pressure / high pressure

Virus retention at low (0.1 bar | 0.3 bar | 0.5 bar) and high (3.0 bar | 5.0 bar) operating pressures were tested with Virosart® HC. PP7 retention is shown in 20 mM KPI buffer, pH 7.2. A pooled fraction was taken after 100 L/m² of filtration at a PP7 challenge level between 4.0 × 10⁷ – 6.0 × 10⁷ pfu/mL.

4.2 Flow stop

Virus retention after a 20 minute flow stop at high operating pressures of 3.0 and 5.0 bar was tested for Virosart® HC. The filters were challenged with PP7 spiked KPI buffer, 20 mM, pH 7.2. 2 fractions were taken as indicated after 100 L/m² and after 106 L/m² of filtration.

5. Case Study: Impact of Solution Composition

A full factorial DOE (2⁴) has been performed with Virosart® HC in order to characterize the impact of solution conditions on virus removal capability. Conductivity, pH and IVIG concentrations have been varied. The filters were challenged with PP7 at a spike level of 10⁷ pfu/mL.

All filtration runs were performed at 2.0 bar operating pressure. Overall 2 fractions were taken: The first one after 50 L/m², then a 15 min flow stop was performed, then the second fraction was taken after 100 L/m².

PP7 retention is independent of the condition tested for Virosart® HC. Pressure release, protein concentration as well as conductivity have no impact on the retention characteristics. The retention values for both factions are shown as well as the LRV loss. There was no virus breakthrough detected in all filtration runs.

6. Summary

This poster is summarizing the result of a robustness study with Virosart® HC looking at various process parameters known to potentially impact virus retention.
• Flow decay up to 90% shows no impact on retention
• Stable and high LRV during pressure release, high and low operating pressure
• Absolute retention of PP7 (above LRV) with various pH, conductivities and protein concentration

PP7 retention is independent of the level of flow decay with absolute retention of > 6.4 (without virus breakthrough).