Development and Qualification of a Complex Potency ELISA

Sartorius Stedim BioOutsource, West of Scotland Scien
Corresponding author: laura.mcaleer@sartorius.com

Introduction

Programmed cell death protein 1 (PD-1) is an immune checkpoint that can be found on cells involved in regulating egulating the sing T cell inflammatory activity. The fore, PD-1 has an important role in preventing autoimmune diseases but can also prevent the immune system from kiling cancer cells. PD-1, which can be found on T cells and some B cells, normally interacts with its two ligands PD-L1 and PD-L2, found on antigen-presenting cells and tumor cells. Many new therapies are targeting the PD-1 pathway to boost the immune response to cancer cells.

Figure 1: Immune checkpoints: PD-1 pathway. T Cells require two signals to become tuly activated.: 1. Antigen-specific interaction of TCell Receptor (TCR) with peptide-MHC molecules. 2. Antigen
non-specific co-stimulatory signal

Currentassays used to me the activity of anti-PD-1 or anti-PD-L1 antibodies measurement of functional endpoints such as cell proliferation, interferon gamma (IFNy) and interleukin-2 (IL-2) production. These assays can be highly variable due to their reliance on primary cells and complex assay protocols. One method todemonstrate the activity of antiPD-1 molecules using a functionally relevant but less variable method using a potency ELISA

Development of the Potency ELISA
Using Modde Pro software a full factorial design of experiment approach was used to begin development of the Potency ELISA.

Figure 3. (A) DoE full factorial run order (11 runs anonymized). The factors assessed were as follows: three concentrations of $\mathrm{PD-1}(\mathrm{~A}, \mathrm{~B}$ and C) are
assessed along with three concentrations of PD-L1 (1, 2and 3) and three concentrations of $H P P$ (X, Y and Z). (B) Graphed results of Experiments $\mathrm{N1}$

[^0]better using results generated for the Upper asymptote, therefore this was primarily used to assess the parameters. (B) Response contour isplayed on the X-axis, in

Figure 5: Accuracy assessments performed with optimized dilution series to better capture the profile of the curve. This was an assessme
methodology prior to ouaulification. The accuracy. reative confidence intervals, range and $R 2$ values were all within an acceptable range.
A potency ELISA with the capabilities to assess up to 6 test material along with a reference standard and QC was developed for assessing anti-PD1 molecules.

Qualification of the Potency ELISA
ICHQ2 states the following characteristics should be evaluated when validating an analytical method. At Biooutsource we use these guidelines as the basis for qual ifying our off-the-shelf assays for biosimilar comparability studies. We assess a wide range of concentrations in our assays which allows us to support clients from clone selection, through the definition of Critical Qual ity Attributes from an innovator population, right to finished product comparability studies,

Results

Figure 7: (A) Unconstrai
(B) Constrained Graph.

Conclusion

Using a DoE approach, Sartorius Stedim Biooutsource have been able to apply a systematic approach to develop a complex ELISA. Foll lowing the principles set out in the ICHQ2 guidelines, we have demonstrated the potency ELISA to be an accurate and precise assay suitable for the characterization of multiple anti PD-1 molecules.

[^0]: (A) 4 dist 4

