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Abstract

Spectroscopy techniques are being implemented within the biopharmaceutical

industry due to their non-destructive ability to measure multiple analytes simulta-

neously, however, minimal work has been applied focussing on their application at

small scale. Miniature bioreactor systems are being applied across the industry for

cell line development as they offer a high-throughput solution for screening and

process optimization. The application of small volume, high-throughput, automated

analyses to miniature bioreactors has the potential to significantly augment the

type and quality of data from these systems and enhance alignment with large-

scale bioreactors. Here, we present an evaluation of 1. a prototype that fully inte-

grates spectroscopy to a miniature bioreactor system (ambr®15, Sartorius Stedim

Biotech) enabling automated Raman spectra acquisition, 2. In 50 L single-use biore-

actor bag (SUB) prototype with an integrated spectral window. OPLS models were

developed demonstrating good accuracy for multiple analytes at both scales. Fur-

thermore, the 50 L SUB prototype enabled on-line monitoring without the need for

sterilization of the probe prior to use and minimal light interference was observed.

We also demonstrate the ability to build robust models due to induced changes

that are hard and costly to perform at large scale and the potential of transferring

these models across the scales. The implementation of this technology enables

integration of spectroscopy at the small scale for better process understanding and

generation of robust models over a large design space while facilitating model

transfer throughout the scales enabling continuity throughout process develop-

ment and utilization and transfer of ever-increasing data generation from develop-

ment to manufacturing.
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1 | INTRODUCTION

The biopharmaceutical industry is ever increasing with its value in

2018 estimated at USD 237,250.8 million and predicted to increase

to USD 388,997.3 million by 2024.1 Therapeutic proteins offer

improved specificity and highly potent and effective treatments for a

wide variety of conditions many of which are chronic with significant

impacts on quality of life and life expectancy2 and also for emerging

novel life-threatening human pathogens such as COVID-19.3

One key challenge in biopharmaceutical development is the

numerous stages of development required for progressing a therapeu-

tic protein4, with a key area being cell line development and screening.

To aid in process development, there has been an uptake in the utili-

zation of miniaturized high-throughput technologies, continuous data

acquisition and data and knowledge driven tools for monitoring and

control.5 Automated, high-throughput miniature bioreactors have

been widely adopted in the industry to aid in automated screening of

cell lines. These systems have many benefits such as being fully auto-

mated, can operate numerous bioreactors simultaneously, can mimic

many of the characteristics of larger scale bioreactors, and can be

used as scale-down models.6,7 However, at small scales (<15 ml), it

can be challenging to operate them in a similar manner as large scale

bioreactors due to the greater number of vessels to sample and

reduced bioreactor working volume, limiting the number of offline

measurements that can be taken. Furthermore, there has been a huge

drive in the pharmaceutical industry to adopt process analytical tech-

nologies (PAT) as a result of the FDA PAT Initiative8 to enhance moni-

toring and control of processes. PAT, such as Raman9-11 and NIR,12

are being implemented for on-line monitoring in large scale vessels as

they offer a non-destructive approach to measuring multiple analytes

simultaneously. However, their use at small scale is limited due to the

headspace requirements and capital costs associated with

implementing for a large number of vessels. Work published in the lit-

erature demonstrates that techniques, such as Raman spectroscopy,

have the potential to be applied as an at-line tool for measuring multi-

ple analytes simultaneously using a 96 well plate format.13-15

A further key consideration for biopharmaceutical development is

to be able to perform scale-up process characterizations in order to

facilitate predicting performance at commercial manufacture scale

from data generated at small scale.16 The use of similar analytical

technologies and measurements across scales supports process char-

acterization and scale-up. The transfer of spectral based models

between scales has been considered in the literature. Strategies for

calibration transfer have widely been discussed such as a calibration

model developed for one instrument, which could be used to the

required accuracy and precision for another instrument. Berry et al.

(2015) sought to assess the scalability and transferability of PLS

models developed using Raman spectra to predict multiple analytes

across numerous scales.16 They demonstrated that accurate models

for glucose, lactate, and osmolarity could be developed with various

combination-scale calibration models however glutamate and ammo-

nium models experienced limitations with single-scale calibrations.

The smallest scale assessed was 5 L and all used an in-situ probe.

Webster et al. (2018) demonstrated the ability to transfer models built

on 5 L scale data to a 10 L scale data for glucose, lactate, ammonium,

viable cell concentration and total cell concentration, however models

for product and glutamate were unable to accurately monitor

changes.17 This was thought to be due to reference method errors

and potentially could be addressed by ensuring better coverage of the

full range of analyte concentration. In these examples, the same in-

situ probes were used across scales. When transferring between

ambr®15 scale and larger scale vessels there is the added challenge

that the overall setup is different and identical probes between these

scales are not currently available. The literature has shown that model

transfer can be carried out from at-line laboratory to in-line industrial

scale for liquid detergent compositions18 however; this required the

use of standardization samples to be run in both experimental setups

by gathering samples from the continuous manufacturing line and

acquiring at-line Raman spectra, requiring additional sample measure-

ments. This approach would however be very difficult to apply for

biopharmaceuticals as media and inoculum will likely vary by batch

lot, and seed train between the scales.

Here we present an integrated solution to a miniature bioreactor

system (ambr®15) that not only enables fully automated setup for

spectral acquisition but also facilitates model transfer across scales by

using a spectral probe head with the same optical path despite varying

sample presentation; an integrated setup to ambr®15 (static) through

to on-line monitoring at 50 L scale (non-static) that can be applied to

commercial scale vessels. The future era of Industry 4.0 envisions an

intelligent data-driven manufacturing environment incorporating

numerous advanced on-line analytics.19 The application of these tools

across the scales will enable this vision to become a reality while

leveraging large amounts of data generated in early development for

commercial scale monitoring and control.

2 | METHODS

2.1 | Spectroscopy integration prototype

Prototypes of the Spectroscopy Platform (Sartorius Stedim Biotech)

were used in this evaluation as integrated solutions for the ambr®15

and 50 L single-use bioreactor bag (SUB). A standard ambr®15

(Sartorius Stedim Biotech) was adapted to allow for integrated Raman

measurements. Figure 1 displays the prototype setup, including data

flow and spectrometer control. The liquid handling capabilities of an

ambr®AM (analysis module) were extended by adding a prototype

optical flow cell (1 mm path length, sapphire windows). The sample

cup was connected to the entrance of the flow cell and the exit was

connected to the waste bottle. A prototype optical probe head con-

nected the flow cell and the Raman spectrometer (HyperFlux PRO

PLUS, probe, and spectrometer, Tornado Spectral Systems). The

ambr®15 control software was supplemented with a module to allow

instrument control of the Raman spectrometer (start/stop measure-

ment) and transfer of spectral data from the Raman instrument to the

ambr®15 computer. This data was then merged with relevant
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bioreactor data (e.g., vessel number, ID, batch ID, sampling time, batch

age, reference data) and jointly exported as a CSV file for model

building.

A prototype of the 50 L SUB (Sartorius Stedim Biotech) was also

evaluated. The Raman measurements in the large-scale SUBs required

a measurement window and probe interface integrated into the bag

film. Therefore, a prototype port containing sapphire windows was

welded into the bag. The optical design of the port and spectral win-

dow material was comparable to the ambr®AM flow cell design there-

fore enabling the connection of a probe head same as that used for

the ambr®15 integrated solution. The design of the SUB spectro port

prototype prevents a direct light path between ambient light and

detector, only light that scatters through the white polymer port has

the chance of being detected. Therefore, the design is expected to

have reduced sensitivity to ambient light. Raman instrument control

was achieved using ambr®15 software on a separate computer.

2.2 | Cell culture

Four CHO-K1A derived cell lines (GSK) were used; two cell lines pro-

ducing an IgG1 molecule (high and low producers relative to each

other) and two cell lines producing an IgG2 molecule (high and low

producers relative to each other).

The cell lines were revived in a proprietary chemically defined

medium and maintained using GSK's proprietary cell culture condi-

tions. The cell lines were passaged and scaled-up to generate a

research cell bank (RCB) to be used for this work. For each production

run performed, a new vial of all four cell lines were revived from the

RCB. This was carried out so that each production run was inoculated

with cells of a similar generation number to minimize cell variation for

a more objective comparison.

The GSK proprietary platform process was used for all production

runs carried out. This was performed in fed-batch mode using glucose

as the main carbon source that was controlled at a set point. Three

supplementary nutrient feeds were added as bolus additions on days

0, 3, 6, 8, 10, and 14. The pH was controlled within the set points of

the process using 1.5 M sodium carbonate and CO2 additions. DO

(dissolved oxygen) was controlled within the set points of the process

by sparging with O2 as necessary.

Three separate production runs were performed within

ambr®15 miniature bioreactor systems (48 vessels/batches per system)

using a working volume of 15 ml and four 50 L batches were carried

out within SUBs. Both ambr®15 and 50 L scales were performed using

the spectroscopy integrated solution setup as discussed previously.

The vessels within ambr®15 production run 1 were inoculated

with the high producing cell lines and ambr®15 production run 2 ves-

sels were inoculated with the lower producing cell lines. The ambr®15

production runs 1 and 2 aimed to provide data (both spectral and ref-

erence data) for model development to predict numerous analytes

(discussed in more detail later). To enable this, a design of experiment

(DOE) type approach was used to create in-vessel variation that

spanned the design space of analyte concentrations of interest; glu-

cose set point (3–7 g/L range) and seeding density (1–1.4 × 106

cells/ml range). Further to this, additional spiking was performed out-

side of the vessel to break correlations between analytes for improved

F IGURE 1 Schematic of the ambr®15 integrated spectroscopy solution prototype
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subsequent model performance. This was achieved through the Spec-

troscopy ambr®15 software that has dedicated functionality for

spiked samples that enabled sampling of each vessel, addition of spik-

ing solution to the sample, sample aspiration in a well plate, take-up

and delivery to the flow cell for spectral acquisition. Varying volumes

of numerous stock solutions were added to a well plate to achieve a

set concentration of spiked solution within the cell culture sample

prior to spectral acquisition. Table 1 displays information on the stock

solutions used for the spiking additions. Two stock solutions were

used for each analyte (other than product). This was carried out to

ensure changes observed were due to analyte addition and not to the

dilution. Furthermore, two stock solutions were used to achieve a

broad, equally distributed analyte range without falling below the min-

imal pipetting volume of the ambr®15 while keeping the sample dilu-

tion in an acceptable range.

Spectra were acquired on non-spiked and spiked samples on days

1, 2, 3, 6, 8, 10, 13, 15, 16, 17. Samples were also taken on these days

and analysed for metabolite information. Cellular measurements were

also obtained throughout the culture.

The third ambr®15 production run was used as a validation run.

As a result, the system was inoculated with all four cell lines that were

randomly assigned to the 48 vessels and the GSK proprietary platform

process was applied. No in-vessel variation was performed, that is,

process conditions and set points were applied and no spiking was

performed outside of the vessel.

2.3 | Reference assays

Cell culture supernatant was analyzed using a Cedex HT Bio (Roche)

to measure glucose, lactate, ammonium, glutamine, glutamate and

product concentration in cell culture supernatant.

Cellular measurements were also obtained using an integrated

Vi-Cell XR (Beckman) using the Trypan blue dye exclusion method.

2.4 | Spectroscopy

A Raman spectrometer (HyperFlux PRO PLUS, Tornado Spectral Sys-

tem) with a 785 nm laser was used. For both the ambr®15 and SUB

setup, the overall measurement time per sample was set to 5 min. To

prevent detector saturation with increasing fluorescence over process

time, single spectra exposure time, and averaging was adapted accord-

ingly while still resulting in a total acquisition time of 5 min in all

cases (e.g., 0.2 s × 300 accumulations × five spectra or 1 s × 60

accumulations × five spectra). The design of the ambr®15 measure-

ment chamber, was optimized to block any directly incoming ambient

light. The SUB spectro port was designed to minimize light interfer-

ence as stated previously. A small shield of aluminium foil was used to

protect the outside of the 50 L SUB port (however, the top of the bio-

reactor and the majority of the sensor windows were not covered). To

account for any ambient light that strayed in the chamber or port,

respectively, and therefore might reach the detector, a dark scan was

performed. This was done prior to each sample measurement to

account for potential variations in ambient light.

2.5 | Chemometric data analysis

Prior to analysis, the data was pre-treated. First, each spectrum was

normalized to 1 s exposure time to account for the different exposure

times due to varying fluorescence. The five spectra of each sample

were then averaged to improve the signal-to-noise ratio. To correct

for varying levels of fluorescence background, a number of different

pre-processing techniques were assessed, including standard normal

variate (SNV) followed by first derivative (Savitzky–Golay), however,

asymmetric least squares smoothing (ALS) baseline correction algo-

rithm20 proved to be superior. All spectra were normalized to the inte-

gral of the water band at around 1,650 cm−1 to correct for sensitivity

differences between the various combinations of probes, fiber con-

nections, and measurement chambers and spectrometer systems.

Raman spectra acquired were explored with the use of different

multivariate data analysis (MVDA) tools. SIMCA version 16.0

(Sartorius Stedim Data Analytics AB) was used for all data analysis.

Principal component analysis (PCA) was applied to explore variability

within the datasets. Orthogonal-partial least squares (OPLS) regres-

sion was used to develop quantitative models for the different

analytes of interest with the X-block dataset consisting of the spectral

variables that were mean-centered while the Y-block was composed

of the reference measurements that were UV-scaled (unit variance

scaling). The spectral regions used for model building were selected

according to those regions that were found to be unique for each ana-

lyte based on a DOE (discussed later).

Several criteria were utilized to determine optimal parameter set-

tings for a robust, well-predicting model. The model should neither be

under- nor overfitted, that is, that it fits the given data well and at the

same time predicts datasets, that are not included in the model, with a

similar error compared to the model error. In general, one aims for a

high Goodness of Fit (R2) while the goodness of prediction (Q2) of the

model increases as well. In the final model, the difference between R2

and Q2 should be below 0.2–0.3, otherwise, there is an indication that

either some of the model components are unnecessary (over-fitting)

or that some outliers are present that should be excluded.21 To obtain

TABLE 1 Stock solution information for spiking additions

Analyte Stock solution (high) g/L Stock solution (low) g/L

Glucose 32 8

Lactate 16 4

Glutamate 7 4

Glutamine 8 2

Ammonia 16 4

Producta 10.8 –

aThis was only performed for the IgG1 molecule as no purified material

was available to spike in IgG2.
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a reliable Q2-value, the validation datasets were carefully selected. As

one of the main goals of this work was the evaluation of the indepen-

dency of the models with regard to cell line and molecule, four

different CV-groups were assigned, each consisting of a single cell

line / molecule combination. Four models were built (leave one

cell line / molecule combination out) and evaluated separately thus

mimicking four independent test set validations. Therefore, in all cases

a cell line / molecule combination was predicted that was not in the

calibration data set. The RMSECV is the average error of the four built

models as described above.

Other good indicators for the quality of OPLS models are the root

mean square error of evaluation (RMSEE) and the root mean square

error of cross validation (RMSECV) where ycal are the values predicted

by the model or the cross-validation resampling strategy (ycvpred) and

yi are the values from the reference method.

RMSEE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX yi−ycalð Þ2
N

s

RMSECV=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX yi−ycvpred
� �2

N

s

Both RMSEE and RMSECV values should be as low as possible. At

the same time, the distance between them should also be low to avoid

overfitting to the current dataset that may result in poor model per-

formance when predicting future data sets.

Outliers were excluded using a number of methods. In the first

step, the Score Plot of a PCA of the data was investigated. The spec-

tra of points outside the Hoteling's T-square boundaries were further

inspected. In case of apparent measurement failures (e.g., empty mea-

surement chamber), the points were excluded. Single outliers present

in the quantitative models, that is, in the observed versus predicted

(CV) plots were also omitted after reconfirmation that they did not fit

the data by their DModX-value. Overall, the outlier rate stayed

below 2 %.

3 | RESULTS AND DISCUSSION

3.1 | Instrument setup

The experimental setup for the ambr®15 is shown in Figure 1. A mea-

surement process of a standard bioreactor sample starts with the liq-

uid handler sampling a bioreactor and release of the sample in the

sample cup of the ambr®AM. The sample is transferred to the flow

cell using a syringe pump. This is followed by the Raman measurement

(785 nm excitation, 495 mW) and a cleaning cycle (standard washing

liquid plus water) to prevent sample carry-over. Sample dilution by

water residuals from the last water rinse of the cleaning cycle was

determined to be around 1% (data not shown). For spiking samples, a

known volume of a single analyte stock solution was added to a well

plate. A bioreactor sample was then taken from a vessel using the

liquid handler and added to the stock solution sample. Both were

mixed in the well plate by pipette aspiration and dispensing, followed

by sample transfer to the sample cup and its delivery to the flow cell

for measurement. SUBs were used at 50 L scale. The SUBs were

designed to include an integrated spectral window comparable to the

ambr®15 integrated solution, enabling the same Raman probe head as

the ambr®15, to be attached externally. This resulted in on-line

Raman acquisition without the requirement for an in-situ probe,

removing the need for prior probe sterilization. The SUB port design

yields reduced light interference as previously described.

3.2 | Experimental design

As discussed in the methods section, a DOE approach was used as

well as spiking additions of stock solutions. This approach was used

specifically to generate samples for model building to minimize corre-

lations between analytes and maximize coverage of the design

space.13 Cell cultivations are highly correlated processes with many

analytes correlating with each other and/or with process time. Using a

DOE approach resulted in differing process conditions and setpoint

within the vessel leading to different process trajectories and reducing

correlations. Furthermore, the DOE approach sought to build robust-

ness into the model by ensuring greater variations than expected later

in larger scale vessels – representing a broader design space so that all

later cultivations fall within the limits.

The aim of the spiking additions was to further reduce the corre-

lations16 and to increase the range of analytes measured. The range

of analyte concentration is highly important for model building, espe-

cially with complex sample matrices such as cell culture, as the

changes in the spectrum have to be significant to be able to link sev-

eral intermediate concentrations to the spectral variations. As a “rule

of thumb”, a range of 10-fold in the reference/expected measurement

should be included in the model.

3.3 | Spectral quality and clustering analysis

Three separate runs were performed in ambr®15 (each with 48 minia-

ture bioreactors). The spectral quality was assessed during each com-

plete run. During the course of the evaluation, data quality improved

due to slight improvements with equipment setup, white light calibra-

tion and the running of the equipment. An OPLS model was devel-

oped to predict glucose concentration (model discussed in more detail

later) that included all ambr®15 runs and the spiking data; scores plot

displayed in Figure 2. The acquired Raman spectra of run 1 shows a

large spread demonstrating variability. This is further demonstrated

through systematic artefacts being observed in the contribution plot

(data not shown) originating from insufficient white light calibration

caused by variations of probe positioning between probe calibration

and batch start. The hardware connection between flow cell and

probe head was improved after the second run. Thus, the data quality

improves by the third ambr®15 run demonstrated through the data
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being clustered together in the scores plot (red) and the artefacts in

contribution plot being smaller and did not show the sinus pattern as

visible in the first batch (data not shown).

A PCA model was also developed focussing on the third ambr®15

run. During this run, all four cell lines producing two different mole-

cules were cultivated in the normal GSK chemically defined process.

Figure 3 displays the scores plot of the PCA model developed.

Cell lines denoted 1 and 2 produced the IgG2 molecule and cell

lines denoted 3 and 4 produced the IgG1 molecule. The scores plots

of the PCA model identifies natural clustering within the dataset. It

can be observed overall, that the major source of clustering occurs

with process trajectory; day 1 through to day 13. It is also demon-

strated that there is generally good overlap of the four different cell

lines (and therefore two different molecules) early in the process sig-

nifying that there is a high potential of developing good predictive

models generic for the molecule and cell line. From day 7, separation

between cell lines occurs however, this is not due to the molecule as

there is still good overlap as shown in Figure 3b. Further analysis iden-

tified that on the day of inoculation, cell line 1 (IgG2) and 4 (IgG1)

were defined as lower producing cell lines and cell lines 2 (IgG2) and

3 (IgG1) were defined as higher producing cell lines. Separation is

observed from days 7–10 based on this difference in productivity.

Interestingly, however, cell line 1 (IgG2) demonstrated much lower

productivity compared to the other three cell lines and this cell line

appears to not follow the same trajectory in the scores plot as the

other three cell lines (Figure 3a). This suggests that to develop a

generic model for product concentration, it may be important to cap-

ture both good and bad performing cell lines in model development to

ensure the model has been trained on all characteristics. This also

shows the potential of using Raman spectra to identify unusual/differ-

ing performance between cell lines.

3.4 | Region selection

The spectral regions used for model building were pre-selected

according to those regions that were found to be unique for each ana-

lyte, respectively. Figure 4 displays single analyte spectra (in water).

As can be seen, unique peaks can be identified corresponding to glu-

cose (~1,150 cm−1), lactate (~850 cm−1) and product (~900 and

1,000 cm−1). Peaks are observed for glutamine and glutamate how-

ever these have a weaker signal and those peaks that are visible are

also present for other analytes indicating that they are not unique to

those specific analytes. This suggests that it may be harder to develop

specific models for glutamine and glutamate. Spectra were also

obtained for ammonium in water however, no peaks can be seen. The

literature suggests that model building may not be possible to directly

measure ammonium concentration22 however, models have still been

F IGURE 2 Scores plot of OPLS model developed to predict
glucose concentration. Ambr®15 data; green: run 1, blue: run 2,
red: run 3. OPLS, orthogonal-partial least squares

F IGURE 3 Scores plot of a PCA model developed on Raman acquired of ambr®15 run 3, (3 PCs, N = 199, 450–1800 cm-1). (a) coloured by
cell line; green: cell line 1, blue: cell line 2, red: cell line 3, yellow: cell line 4., (b) coloured by molecule; green: IgG1, blue: IgG2. The arrows indicate
the process trajectory. PCA, principal component analysis
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developed16,17,23 but these may be correlated with changes of other

components in cell culture.

A DOE approach was applied to further study and identify Raman

peaks that are unique for each analyte of interest. By using this

approach, it also identifies which analytes can be directly measured

using Raman spectroscopy and therefore models based on causality

and those which are based on correlations. This approach also enables

model performance in “optimum” conditions to be understood as the

preparation of the samples was carried out under optimal laboratory

conditions, with unchanging sample matrix without bubbles and parti-

cles, as well as using high accuracy balances to prepare the samples

rather than relying on reference methods.

The study was designed with four concentration levels for each

of the analytes glucose, lactate, glutamine, glutamic acid, ammonium,

and BSA, respectively. In combination with three center-points, this

resulted in 18 experiments. For the measurement, a re-usable probe

(MarqMetrix) in combination with a Raman Spectrometer (HyperFlux

PRO PLUS, Tornado Spectral Systems) was used. Each sample was

measured in a glass vial, which was shielded from ambient light.

For the identification of unique peaks of each analyte, the col-

lected spectra were first baseline corrected and then imported into

SIMCA (Sartorius Stedim Data Analytics). OPLS models for each

individual analyte were developed. For identifying unique

wavenumbers, the variable importance in the projection (VIP) was

utilized. The VIPs describe the influence of each x-variable – in this

case, the wavenumbers – on the y-variable. The average of all VIPs

always equals to one, and therefore variables with a VIP larger than

one are assumed to be most important for describing y.21 By identi-

fying the wavenumbers specific to each analyte, wavenumber

regions specific for the analyte of interest could be included for

model development, reducing potential correlations between

analytes. The VIPs identified in this DOE study were later used for

the model building with the ambr®15 and SUB data.

3.5 | Prediction of metabolites using orthogonal
partial Least Square regression

Individual OPLS models were developed to correlate the Raman

spectra with off-line measurements (Cedex) to produce predictive

models for glucose, lactate, glutamine, glutamate and product

concentration. Prior to model development, pre-processing was

applied to the datasets and different regions of the spectra were

included (discussed previously). Outlier identification was then

carried out, initially using scores plots of PCA and then further by

evaluating their Hotelling's T-square and DmoDX-values (data not

shown) and sum up to less than 2% of detected outliers. Figure 5

displays the observed versus predicted plots for each of the OPLS

models developed.

OPLS models developed to predict lactate and glucose concentra-

tion demonstrated high accuracy sufficient for the application

described in this study (0.28 g/L and 0.34 g/L RMSECV respectively).

The model developed to measure product concentration also demon-

strated good accuracy with an RMSECV of 0.22 g/L and all three

models showed good correlation between the measured and

predicted values (R2 coefficient > 0.95). OPLS models were also

developed to predict glutamine and glutamate however the errors,

compared to the range in concentration observed, were high

(0.038 g/L and 0.073 g/L RMSECV respectively) and the R2 coefficient

lower than the models for the other analytes (0.709 and 0.783 respec-

tively). This is likely due to the low concentration of each analyte

observed in cell culture and through non-specific analyte peaks

observed in the spectra (discussed earlier). The models may be further

improved through the addition of spectra of spiked cell culture (dis-

cussed later). A summary table of model performance is displayed in

Table 2.

Raman spectra used for model development was acquired of four

cell lines, two producing an IgG1 and two cell lines producing an IgG2

molecule. The models reported here demonstrate the ability to

develop generic models that can be used for multiple cell lines and dif-

ferent molecules. This is aligned with other work published in the lit-

erature for on-line monitoring at larger scale.16,17

An offline reference method was used for model calibration. As a

result, there was a time delay between reference method and Raman

spectra acquisition. This time difference can be up to several hours

and may therefore result in differences in analyte concentrations that

were measured offline and those later seen by the Raman spectrome-

ter. To investigate the impact of this delay on model performance, the

glucose concentration was approximated at the time of Raman sam-

pling. For each spectrum at timepoint ti, the glucose concentration

was determined using a mass balance equation. First, the viable cell

concentration (VCC) according to the Monod model for cell growth

were calculated.24

VCCn= cX0× e
ln cX1− ln cX0

tX1−tX0 * tn−tX0ð Þ

The glucose concentration was calculated using the adjusted VCC at

timepoint t0, t1 and ti, also taking into account that glucose-containing

F IGURE 4 Single analyte spectra in water. *Sapphire bands from
the integrated flow cell window
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F IGURE 5 Observed versus predicted (cross-validation) plots for OPLS models developed to predict (a) glucose, (b) lactate, (c) glutamine,
(d) glutamate, (e) product concentration. For all plots, green: ambr®15 run 1, blue: ambr®15 run 2, red: ambr®15 run 3. OPLS, orthogonal-partial
least squares

TABLE 2 Summary of the final OPLS models developed with and without spiked samples

Without spiked samples With spiked samples

Analyte Range (g/L) LV R2 RMSEC (g/L) RMSECV (g/L) Range (g/L) LV R2 RMSEC (g/L) RMSECV (g/L)

Glucose 0–14 1 + 4 0.987 0.31 0.37 0–18 1 + 4 0.984 0.35 0.40

Lactate 0–6 1 + 3 0.971 0.22 0.34 0–6 1 + 4 0.975 0.21 0.29

Glutamine 0–0.2 1 + 3 0.709 0.031 0.042 0–2.5 1 + 5 0.618 0.18 0.22

Glutamate 0.2–1 1 + 5 0.783 0.070 0.083 0–2 1 + 5 0.819 0.14 0.15

Product Normalised 1 + 5 0.934 0.17 0.23 Normalised 1 + 6 0.923 0.20 0.37

Abbreviations: OPLS, orthogonal-partial least squares; RMSECV, root mean square error of cross validation.
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feed mediumwas added and glucose was consumed by the cells at differ-

ent rates over the course of a batch (fed-batch model)

VCC0=VCCn cX0,cX1,tX0,tX1,t0ð Þ

VCC1=VCCn cX0,cX1,tX0,tX1,t1ð Þ

VCCi =VCCn cX0,cX1,tX0,tX1,tið Þ

qS =
V0× cS0+VF× cSF−V1× cS1−VSample× cS0ð Þ

t1−t0ð Þ× VCC0+VCC1
2 *V0+V1

2

cSi

=
V0× cS0+VF× cSF−u_rate×VCCi× ti−t0ð Þ×Vi−VSample× cS0ð Þ

Vi

qS = average glucose consumption rate per cell between samples

cSi = calculated glucose concentration at timepoint ti

cX0 = VCC at timepoint tX0

tX0 = Closest timepoint before ti for vcc

cX1 = VCC at timepoint tX1

tX1 = Closest timepoint after ti for vcc

t0 = Closest timepoint before ti for specific measurement

t1 = Closest timepoint after ti for specific measurement

ti = Calculation timepoint

V0 = Volume at timepoint t0

V1 = Volume at timepoint t1

VF = Volume of added glucose feed

cSF = Glucose concentration within feed medium

cS0 = Glucose concentration at timepoint t0

cS1 = Glucose concentration at timepoint t1

VSample= Volume of taken sample

For automatization, these calculations were implemented in

Python 3.7 with the Pandas 0.23.4 and numpy 1.15.4 library. For each

batch, the corresponding files containing the above mentioned param-

eters were imported into the Python environment and after calcula-

tions the results were exported into a separate file. This new data

table was then imported into SIMCA along with the spectra for further

evaluation. OPLS models were then developed to compare the use of

the adjusted glucose offline values with the measured glucose values.

OPLS models were developed to include only ambr®15 runs 2 and

3 (so as to use the better quality spectra as discussed earlier). Both

models contained 1 + 3 principal components. Despite adjusting for the

delay in measurement, the model using the measured value showed a

smaller error (RMSECV ~ 0.3 g/L) compared to the model that used the

adjusted glucose concentrations (RMSECV 0.4 g/L); Figure 6. It is

important to note, that the growth and feeding consumption kinetics

for a mammalian process is slower compared to, for example, a bac-

terial process.25,26 This would also suggest that any delay in mea-

surement may not significantly affect model performance. The

difference in model performance is also likely due to additional

errors incorporated through the complex calculations for adjusting

the glucose concentration and measurement errors of the various

input parameters. Therefore, for this example, more accurate models

can be obtained through the use of the measured glucose concen-

tration despite delays between the sample being taken, the offline

reading and Raman spectral acquisition. Further improvement may

be achieved through the use of an integrated reference method

(assessment out of scope of the work presented here).

3.6 | Prediction of metabolites using orthogonal
partial Least Square regression using spiked samples

One challenge of using spectroscopy techniques such as Raman for

measuring multiple analytes in cell culture is that many of the compo-

nents of interest are highly correlated. The literature has shown that

more robust models can be generated by breaking these correlations,

ensuring that the models developed are specific for the analyte and

therefore influenced less by fluctuations in other components. This

has been achieved through the use of DOE approaches13 and through

spiking of known concentrations to deconvolute signal information.16

The ambr®15 spectroscopy integration solution has the ability to per-

form spiking additions of known volumes of a stock solution by

F IGURE 6 Observed versus predicted (cross-validation) plots for OPLS models developed using ambr®15 run 2 + ambr®15 run 3 using (a)
measured glucose concentration, (b) adjusted glucose concentration. Blue: ambr®15 run 2. Red: ambr®15 run 3. OPLS, orthogonal-partial least
squares
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sampling from a vessel, delivering to a well plate (containing a known

volume of stock solution), aspirating the sample and delivering it to

the sample cup to be transferred through to the flow-cell for Raman

spectra acquisition. This was performed to break correlations between

analytes and to increase the range of concentration observed by the

multivariate calibration model.

OPLS models were developed to include Raman spectra acquired

of cell culture spiked with known volumes of a stock solution to vary

the concentration of individual analytes. Pre-processing was applied

to the spectra and outlier identification was carried out as discussed

previously (data not shown). Figure 7 displays the observed versus

predictive plots of the individual OPLS models developed correlating

Raman spectra with glucose, lactate, glutamine, glutamate and prod-

uct concentration.

As can be seen in Figure 7, the addition of the spiked samples

increased the range in concentration for all analytes. This was less

apparent for glucose and lactate concentration, which may result in

reduced model performance when using these additional samples for

model building. Table 2 displays the summary statistics of the models

developed with and without the spiking samples.

Models including both spiked data (i.e., adding in a known volume

of a stock solution to a sample prior to Raman acquisition) and non-

spiked data were developed. Overall, the models demonstrate similar

performance however, for those analytes at very low concentration;

the spiking has resulted in a broader range to be explored. This is par-

ticularly important for models developed for glutamine and glutamate.

For both these analytes, their concentration in the bioreactor samples

are likely below the detection limit of the Raman instrument (~0.1–

F IGURE 7 Observed versus predicted (cross-validation) plots of OPLS models developed for (a) glucose, (b) lactate, (c) glutamine,
(d) glutamate, and (e) product concentration. For all plots, green: non-spiked samples, orange: spiked samples. OPLS, orthogonal-partial least
squares
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0.2 g/L). By including the spiking samples, the range is increased and

enhances the likelihood of developing a causal model rather than one

built on correlations.

An additional aim of using spiked samples was to break correla-

tions between analytes ensuring model robustness to small fluctua-

tions in cell culture samples. Table 3 and Table 4 display the

correlation matrix of data without spiked samples and with spiked

samples respectively. Values above 0.6 are considered to demonstrate

a strong correlation for example, in Table 2 glutamine appears to be

strongly correlated with product (0.886, Table 3), however, when

introducing spiked samples, this correlation is reduced (0.08, Table 4).

Product correlation to batch age was not completely broken

(Table 3:0.739, Table 4:0.524). This is likely due to a smaller number

of spiking samples generated for the model predicting product con-

centration. It is is also important to note that there was only spiking

material available for one product and therefore many vessel samples

did not include product spiking. As a result, the time correlation is still

present.

Overall, the correlation between the analytes is broken

(or reduced) when introducing spiked samples. This provides confi-

dence that the models will be measuring the specific analyte and not

inferring based on a correlation with another component. This is par-

ticularly important for ensuring models are robust as slight changes

may result in the models no longer being able to perform effectively if

they rely on correlations of other components. It is important to note

that minimal differences were observed in the correlation matrices for

glucose concentration. This is likely due to variations in glucose feeds

being built into the experiment that is, a DOE was performed to vary

glucose set point in the vessels. As a result, correlations were already

broken and therefore further spiking additions did not appear to

improve this further. In addition, the correlation matrix showed little

difference for lactate concentration. This may be due to the spiking

solutions used being in the range already captured with the non-

spiking samples. Further improvement in correlation and model per-

formance may be sought using a larger range of spiked samples.

3.7 | Transfer of models developed using
miniature bioreactor cultures to predict glucose
concentration at 50 L SUB scale

Accurate OPLS models for glucose concentration in cell cultures were

developed using Raman spectra generated with the integrated minia-

ture bioreactor solution. Further analysis was then carried out to

determine the potential of using spectral data acquired of cell culture

in miniature bioreactors for on-line monitoring at 50 L scale.

A prototype of a 50 L SUB, containing an integrated optical win-

dow, was evaluated. For the 50 L SUB integrated setup, the spectral

window was fully integrated to the SUB and gamma-irradiated prior

to use. The Raman probe head was then attached to the outside of

the bag removing the need for sterilizing an in-situ probe. The optical

light path and window geometry and material was identical to the

TABLE 3 Correlation matrix of reference data without spiked samples

w/o spiking Batch age (hr) Glucose Lactate Glutamine Glutamate NH3 Product

Batch age (hr) 1 0.294 0.270 0.608 0.038 0.573 0.739

Glucose 0.294 1 0.072 −0.143 −0.455 −0.004 0.037

Lactate 0.270 0.072 1 0.012 0.033 0.143 0.143

Glutamine 0.608 −0.143 0.012 1 0.280 0.325 0.886

Glutamate 0.038 −0.455 0.033 0.280 1 −0.014 0.013

NH3 0.573 −0.004 0.143 0.325 −0.014 1 0.439

Product 0.739 0.037 0.143 0.886 0.013 0.439 1

Note: Strong correlation is identified by values above 0.6.

TABLE 4 Correlation matrix of reference including spiked samples

Spiking Batch age (hr) Glucose Lactate Glutamine Glutamate NH3 Product

Batch age (hr) 1 0.310 0.265 0.139 0.052 0.223 0.524

Glucose 0.310 1 0.073 −0.120 −0.294 −0.010 0.019

Lactate 0.265 0.073 1 −0.058 0.006 0.021 0.109

Glutamine 0.139 −0.120 −0.058 1 −0.022 −0.025 0.084

Glutamate 0.052 −0.294 0.006 −0.022 1 −0.090 −0.049

NH3 0.223 −0.010 0.021 −0.025 −0.090 1 0.119

Product 0.524 0.019 0.109 0.084 −0.049 0.119 1

Note: Strong correlation is identified by values above 0.6.
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miniature bioreactor integrated solution allowing the same Raman

probe head to be used at both scales, facilitating model transfer. The

geometry also resulted in the sample channel exposed to the spectral

window for Raman acquisition being enclosed, reducing light interfer-

ence frequently experienced when using in-situ probes.27 At present,

it is common practice to cover large-scale vessels with aluminium foil

to reduce interference from ambient light. This is not practical, espe-

cially at large scale and therefore the use of this prototype facilitates

easier setup and operation of large scale SUB while resulting in better

quality spectra. Upon completion of the run, the internal sample chan-

nel was assessed for clogging as a result of increased cell density (cell

concentrations reached up to 31 × 106 cells/ml with 98% viability).

No clogging was observed or spectral artefacts from bubbles were

detected in the spectra, neither was any ambient light interference.

OPLS was used to develop a predictive model correlating glucose

concentration with spectral data acquired during the three miniature

bioreactor runs and spectral data acquired during the first 50 L SUB

batch. Figure 8 displays the observed versus predicted plot of the

OPLS model developed. The predictions using Raman spectra

acquired of cell culture at the 50 L scale overlays well with the

ambr®15 batches, however the CV error increases (0.67 g/L).

The OPLS model developed correlating glucose concentration

with the three miniature bioreactor runs and the first 50 L SUB batch

was then used to predict a separate 50 L SUB batch (Batch 3).

Figure 9 displays the observed versus predicted over batch age

(hr) before (A) and after (B) a one-point calibration.

Overall the prediction error was 1.89 g/L. Following a single-point

calibration this further improved to 0.99 g/L RMSEP. These results

are extremely promising, demonstrating the potential of transferring

and using a model built on small scale data with a requirement of only

using a single large scale batch followed by a single-point calibration.

It was evident in this study that postbatch detected spectral variations

in the sapphire window of the SUB and the ambr® flow cell likely had

a significant impact on the offset observed. Improvement in window

material is likely to achieve higher consistency between systems for

improved model transfer. This evaluation demonstrates the potential

of the integrated solution to facilitate model transfer across scales.

4 | CONCLUSION

Miniature bioreactors are increasingly being utilized in the biopharma-

ceutical industry for early cell line selection screening and process de-

risking for larger scale. To facilitate technology continuity and model

transfer, an integrated spectroscopy solution to both miniature biore-

actor scale and large scale SUB was evaluated. It was demonstrated

that accurate models could be developed using the integrated minia-

ture bioreactor solution. Furthermore, it was shown that the addition

of spiking known concentrations of analytes into cell culture samples

prior to Raman acquisition can increase the range in concentration

observed by the calibration models and break correlations between

analytes, building robustness into model development. The develop-

ment and use of the integrated solution at 50 L scale enabled on-line

F IGURE 8 Observed versus predicted (cross-validation) plot for
the OPLS model developed to predict glucose concentration using
spectral data from; green: 50 L SUB (batch 1), blue: miniature
bioreactor (run 1), red: miniature bioreactor (run 2), yellow: miniature

bioreactor (run 3). OPLS, orthogonal-partial least squares

F IGURE 9 Time series of predicted (green) glucose concentration and observed (blue) glucose concentration of a model calibrated with
3 × ambr®15 data and 1 × SUB data and used to predict glucose concentration in a separate SUB run (a) prior to a one-point calibration (b) after
a one-point calibration
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monitoring at large scale without the need for sterilizing a traditional

in-situ probe. Due to the design of the SUB integrated spectral win-

dow, minimal light interference was observed improving spectra gen-

erated in large-scale vessels. It was demonstrated that a predictive

model for glucose concentration using spectral data acquired of cell

culture at small scale could be used to accurately measure glucose

concentration at 50 L scale. Utilizing data at small scale with experi-

mental variations is important for robust model generation that would

be very costly if not impossible to perform at larger scale. The imple-

mentation of this technology across scales will enable automated

spectral acquisition at small scale, technology, and operation continu-

ity across scales and facilitate model transfer from development

through to commercialization.
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