

Sialic Acid (GlyS) Kit User Guide

Molecular Devices LLC

47661 Fremont Boulevard Fremont, CA 94538 888.OCTET-QK 650.322.1360 www.fortebio.com

Sialic Acid (GlyS) Kit User Guide Rev A Copyright © 2019 Molecular Devices LLC. All rights reserved.

Table of Contents

Chapter 1:

Welcome
Intended use4
Introduction4
Kit overview4
Conventions and symbols used in this guide6
ForteBio technical support6

Chapter 2:

Getting Started
Storage and stability8
Important procedural notes for optimal performance9
Protocol Guidelines
Assay protocol: human mAb 15
For Octet RED96e, RED96, 384 and HTX (8, 16 and 96 channel systems)15
Assay protocol: non-mAb
Assay protocol: Fc-fusion protein 20
Assay protocol for direct assay: purified glycoprotein21

Chapter 3:

Analysis	23
Glycan analysis	24
Loading Data Files	24
Viewing the Data	24

Processing Data25
Generating the Glycan Analysis
Report

Chapter 4:

Additional Assay Guidelines	31
Control samples	32
Confirmation of signal by sialidase	
digestion assay	32

page 2

CHAPTER 1: Welcome

Intended use	. 4
Introduction	. 4
Kit overview	. 4
Conventions and symbols used in this guide	. 6
ForteBio technical support	. 6

Intended use

The Sialic Acid (GlyS) Kit is intended for relative screening of terminal sialic acid in crude or purified samples. It has been developed as a simpler and faster complement to HPLC/MS/LCMS methods with reduced hands-on time for customers who desire more information earlier in their workflow. The GlyS Kit provides relative screening and is not intended for absolute quantitation. This kit is for research use only and is not intended for diagnostic use.

Introduction

During cell line and drug development, post-translational modifications (PTMs) impact functional characteristics of the protein of interest (POI). These PTMs range from phosphorylation, glycosylation, methylation and many others. Glycosylation is a major PTM that has received of pharmacopeial attention due to its complexity and variability. Protein glycosylation requires the interaction of many enzymes and substrates, and it also depends on the cell line factors and culture conditions. These factors may induce significant variability in the POI. This variability can affect product safety and efficacy, more commonly referred to as critical quality attributes (CQA).

POI glycosylation patterns are considered a CQA due to different types of glycosylation having various impacts on the biological activity of a protein — protein folding, conformation, distribution, stability and activity. Protein glycosylation can affect *in vitro* stability (product shelf-life), isolation and purification steps (process consistency) and pharmacokinetics (half-life). Sialic acid is known to have an impact on the stability of a protein, and higher levels of sialic acid is often correlated with better stability. There is also literature showing the impact of sialic acid on clearance of drug molecules from a biological system.

ForteBio's Sialic Acid (GlyS) Kit provides a rapid and convenient method for relative screening of terminal sialic acid content in crude or purified samples. Sialic acid data can then be combined with titer data using Octet Data Analysis HT software version 11.1 or higher to funnel through POIs that are high producers and have desirable sialic acid content.

Kit overview

The GlyS Kit allows relative screening of terminal sialic acid content in crude or purified samples, and is comprised of GlyS biosensors and a reagent kit. GlyS biosensors are pre-immobilized with lectin that detects both N- and O-linked terminal sialic acid but has higher specificity towards O-linked terminal sialic acid. The reagent kit includes buffers for sample, antibody and detection substrate preparation.

The recommended workflow for the GlyS Kit is dependent on the type of sample to be analyzed. This user guide includes protocols for monoclonal antibody (mAb) samples, non-mAb samples, Fc-fusion proteins and purified samples. For purified samples, there

is no signal amplification required as the biosensor is binding only to the terminal sialic acid available on the protein of interest. However, for crude samples, since there is competition from sialic acid present on host cell glycoproteins (HCP) to bind to GlyS biosensors, the protocol provides necessary steps to selectively amplify signal from a POIs sialic acid and not from HCP. This selective amplification of signal ensures the signal is from the POI and not from HCP, and removes the need to purify samples. The GlyS kit can be used on any Octet system with different throughput experienced based on the system.

The glycan screening feature in Octet Data Analysis HT software version 11.1 and higher allows the combining of a POI's titer data and GlyS data. This results in a chart that shows combined information with titer (high/low producer) on the X-axis and relative sialic acid content (stability of POI) on the Y-axis. This feature enables decisions to be made faster based on CQA requirements. Details on how to use this analysis feature are covered in "Analysis" on page 23.

A list of Octet systems and channel capability for each are shown in Table 1-1. A 96channel system provides highest throughput. A Sidekick station is recommended with an 8 or 16-channel system to increase throughput.

System	Number of Channels	Plate Types
Octet RED96/RED96e	8	96-well plates only
Octet QK ^e	8	96-well plates only
Octet RED384	8 or 16	96- and 384-well plates
Octet QK384	8 or 16	96- and 384-well plates
Octet HTX	8, 16, 32, 48 or 96	96- and 384-well plates

Table 1-1: Octet systems and channel capability

The workflow for relative screening of terminal sialic acid using the GlyS Kit with an Octet system is shown in Figure 1-1.

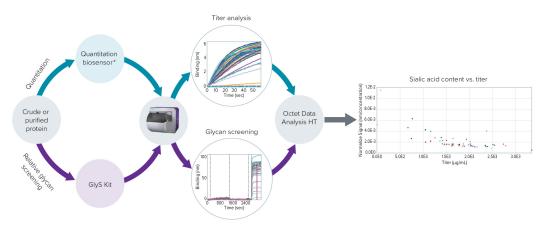


Figure 1-1: Sialic Acid (GlyS) Kit workflow on Octet system.

Conventions and symbols used in this guide

NOTE: Presents pertinent details on a topic. For example, general information, tips or alternate options.

IMPORTANT: Indicates the assay or procedure will not work if the guidelines provided are not properly followed.

WARNING & CAUTION: Informs the user that specific actions could cause irreversible consequences or damage. To prevent hazards, the manual should be read before operating the equipment.

ForteBio technical support

You can contact ForteBio technical support at:

Molecular Devices LLC 47661 Fremont Boulevard Fremont, CA 94538 USA Tel: +1-800-635-5577 Fax: +1-650-322-1370 E-mail: fortebiosupport@moldev.com

CHAPTER 2: Getting Started

Materials required
Storage and stability
Important procedural notes for optimal performance
Protocol Guidelines
Assay protocol: human mAb 15
Assay protocol: non-mAb 20
Assay protocol: Fc-fusion protein
Assay protocol for direct assay: purified glycoprotein

Materials required

- Octet HTX, QK384, RED384, QK^e, RED96 or RED96e instrument with Octet Data
 Acquisition and Data Analysis software version 11.1 or higher
- A Sidekick station (ForteBio PN 30-5011) is highly recommended to improve throughput if using 8 or 16-channel instruments
- Black polypropylene 96-well or 384-well microplates (Greiner Bio-One 655209 or 781209) or 384 Tilted Well microplates.
- Sialic Acid (GlyS) Kit (ForteBio PN 18-5135) which includes the items listed in Table 2-1.
- PBS buffer without sodium azide
- Kinetics Buffer 10X (ForteBio PN 18-1105)
- Optional: Sialidase (Sigma N2876-25UN)
- Optional: Goat Anti-rabbitlgG, Secondary Detection Antibody (Jackson Immunoresearch, 111-035-144 or equivalent)

Table 2-1: GlyS Kit contents

Item	Quantity	
GlyS biosensors	1 tray of 96 biosensors	
Glycan Buffer A	100 mL (2 x 50 mL)	
Glycan Sample Prep Buffer	100 mL (2 x 50 mL)	
Anti-human IgG Detection Antibody (50X)	0.5 mL	
Glycan Detection Substrate (65X)	0.5 mL	
Glycan Detection Buffer (40X)	0.72 mL	
Glycan Wash Buffer	46 mL	

Storage and stability

- GlyS biosensors should be stored at room temperature in the provided resealable bag with desiccant packet, away from direct sunlight. Do not refrigerate or freeze biosensors.
- All other reagents should be stored at 2-8 °C.
- Avoid exposure to higher temperature for all reagents (>25 °C).

• Store Glycan Detection Substrate and Glycan Detection Buffer in the dark. Prevent from long exposure to strong light.

Important procedural notes for optimal performance

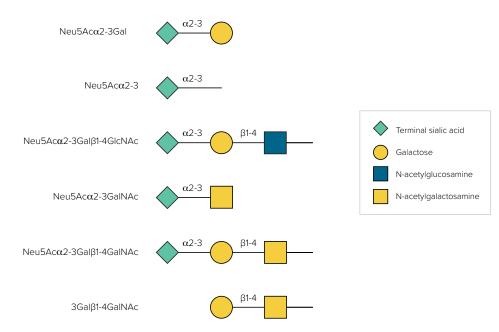
- Glycan Sample Prep Buffer. All POIs should be diluted at least 1/10 (v/v) with Glycan Sample Prep Buffer for optimal glycan exposure to the biosensors. This buffer is specially formulated to relax folded glycoproteins so that terminal glycans can be accessible for binding to the GlyS biosensor.
- Crude sample usage. The GlyS Kit is designed to selectively amplify signal from the POI by using target secondary antibody (*i.e.* if the sample is human IgG, then an Anti-humanIgG detection antibody is used). This allows use of crude sample without any purification).
- Assay interference. HCPs in crude samples will directly compete with the POI for binding to the GlyS biosensor. Therefore, only glycoproteins with the same crude host cell conditions should be compared for meaningful results. It is important to design the experiment so that the following factors won't influence data interpretation:
 - Two different species of host cells (*i.e.* CHO cells and *E.coli* cells) will contain different host cell proteins with different levels of glycosylation. Thus, CHO HCP may compete with the POI differently than *E. coli* HCP and cause varying limitations for POI binding.
 - Crude samples from different stages of cell line development (CLD) may contain different amounts of HCPs. Thus, competition from samples which may contain lower amounts of HCP will be lower than that from samples which may contain higher amounts of HCP. It is recommended to test early and late-stage samples separately for a fair comparison.

NOTE: Certain sample matrices (i.e. custom formulated media with varying amounts of sugars) can cause interference as well. It is important to test for assay interference as part of end-user validation.

- **Reference (zero) sample.** A crude sample with similar HCP amounts but no POI expression is an ideal reference sample to measure background signal.
- Assay Dynamic range. GlyS amplification assay via secondary antibody will only
 pick up signals from the POI. However, presence of host cell glycoprotein will
 compress assay dynamic range depending on the amount of host cell glycoprotein present and/or the amount of sialylation of the host cell glycoproteins. Interference may cause non-linearity in the sample detection range. It is important to
 test for assay interference to determine the linear dynamic range of the sample
 as part of end-user validation.

 \bigcirc

NOTE: A signal shift of more than 60 nm is less accurate because the algorithm has a relatively less number of data points for calculation. If the binding signal nm shift is higher than 80 nm, it may exhibit a crashed signal pattern in the sensorgram. It is highly recommended to dilute samples to get a signal lower than 60 nm.


The optimal amount of starting glycoprotein should be determined by the enduser, depending on the level of sialyation and the method of detection used.

NOTE: We recommend performing a linearity test to determine the linear range (<60nm signal) of your POI. For example, dilutions ranging from 1/10, 1/100 and 1/1000 of your sample of interest with Glycan Sample Prep buffer should help determine the dilution required to remain in the linear range.

For mAb samples such as NIST human standard mAb, a dilution resulting in <10 μ g/mL has shown to give reliable results. For non-mAb samples such as fetuin, a dilution resulting in <0.5 μ g/mL has shown to give reliable results. For purified samples with high levels of sialic acid such as Erythropoietin (EPO) or fetuin, a direct binding assay with a dilution resulting in ~10-100 μ g/mL has shown to give reliable results.

 Binding specificity. GlyS biosensors are pre-immobilized with a lectin that has high binding specificity towards O-linked terminal sialic acid in addition to other forms. Unlike typical antibody-antigen interactions, lectin-glycoprotein bindings are heterogenous and there may be non-specific binding. The preferred binding specificity of the pre-immobilized lectin on GlyS biosensors is shown in Figure 2-1 with it exhibiting highest preference towards the fifth structure.

Figure 2-1: Preferred binding specificity of pre-immobilized lectin on GlyS biosensors towards different oligosaccharides.

- **NOTE:** For meaningful comparison between early stage samples screened using the GlyS Kit and late stage samples characterized using HPLC/MS, it is recommended to use a total glycan digestion method which digests N- and O-linked glycans (e.g. acid hydrolysis) for glycan release during HPLC/MS validation to have comparable data with the GlyS Kit.
- The GlyS Kit won't distinguish between NANA and NGNA forms of sialic acid. The GlyS Kit is intended for relative screening (high/medium/low) of a POI's terminal sialic acid content in crude and purified samples only.
- Sialidase Digestion Assay (Optional). A sialidase digestion assay can be performed to validate binding specificity. A sialidase digestion workflow example is provided in "Additional Assay Guidelines" on page 31. As each biological sample's conditions are different, optimization of sialidase assay conditions according to the POI (amount of sample and enzyme to use, incubation time, etc.) is recommended.
- Sidekick station (ForteBio PN 30-5011). Use of a Sidekick station is recommended for this assay as it decreases total online assay time and improves throughput. A Sidekick station is not required when running this assay on the Octet HTX system, since all steps can be performed in high throughput (96-channel mode) on the instrument.

Re-use of reagents

- Avoid reusing reagents if possible
- Glycan Detection Mix at working concentration can be re-used in a single experiment for multiple biosensor dips when using a Sidekick station.
 - Glycan Detection Substrate in a 96-well plate (200 μL volume) can be re-used/dipped up to 10 times.
 - Glycan Detection Substrate in a 384-well plate (80 µL volume) should be used only once.
- We strongly recommend using Anti-hIgG Detection Antibody for a single dip only. This step is crucial for amplification of the POI and cross-well contamination from previous dip can interfere with binding and hence affect amplification if re-dipped.
- Re-use of reagents when not using a Sidekick station is not recommended.
- Assay signal variation from lot-to-lot. It is recommended to use the same lot of GlyS biosensors for side by side comparison of POIs as the ranking is relative. The variation does not impact results or assay linear range. Refer to Certificate of Analysis (CoA) for lot-specific details.
- Do not mix and match kits and biosensor trays. Kit reagents are paired with a specific lot of biosensors to perform optimally. Lot numbers for individual components of a kit are printed on the CoA.
- Glycan Detection Mix. Please refer to the material Safety Data Sheet (SDS) for safety information on the Glycan Detection Substrate and the Glycan Detection Buffer. Dispose of used and unused reagents in accordance with all local, state and federal guidelines. Proper safety measures should also be taken when handling hazardous materials.

Protocol Guidelines

Prior to beginning an assay:

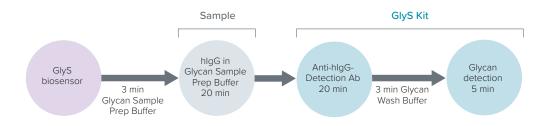
- Remove reagents from 4 °C and allow to equilibrate to room temperature on the bench top.
- Set out biosensors, microplates, and additional materials on a clean workplace.
- Confirm the Octet instrument has been powered on for at least 3 hours.
- Protect Glycan Detection Substrate and Glycan Detection Buffer from strong light.
- Please refer to the material safety data sheet (SDS) for safety information on the Glycan Detection Substrate which contains acetonitrile. Proper personal safety measures should be taken when handling hazardous materials.
- Use 200 $\mu L/well$ volumes for 96-well microplates and 80 $\mu L/well$ volumes for 384-well microplates.

It is important to know your instrument capacity (see Table 2-2 and Table 2-3). Depending on the capacity of your Octet system and the availability of a Sidekick system, assay steps can be performed on- or off-line depending on your throughput needs.

		nel mode dekick)		el mode + ekick		el mode + ekick		
Samples per run	g	96 96		96 96 96		96		6
Workflow	Online/ Sidekick	Duration (mins)	Online/ Sidekick	Duration (mins)	Online/ Sidekick	Duration (mins)		
Baseline (Glycan Sample Prep Buffer)	Online	3	Sidekick	3	Sidekick	3		
User Sample	Online	20*	Sidekick	20*	Sidekick	20*		
Detection Ab	Online	20*	Sidekick	20*	Sidekick	20*		
Wash (Glycan Wash Buffer)	Online	3	Online	48	Online	96		
Detection (Glycan Detection Mix)	Online	5	Online	48	Online	96		
Total		51 min		91 min (1.5 hrs)		139 min (2.3 hrs)		

Table 2-2: Instrument	capacity, 9	6 samples	per run.
-----------------------	-------------	-----------	----------

*20 min is the recommended incubation time to reach saturation. The duration can be modified in assay settings if the POI reaches saturation sooner, or a custom condition is desired.


Table 2-3: Instrument capacity, less than 96 samples per run.

	16-channel mode (no Side- kick), 384-well plate	16-channel mode (no Side- kick), 96-well plate	8 channel mode (no Side- kick), 96-well plate
Samples per run	64	32	16
Workflow	Online/ Sidekick	Online/ Sidekick	Online/ Sidekick
 Baseline (Glycan Sample Prep Buffer) 	All steps online	All steps online	All steps online
User Sample			
Detection Ab			
 Wash (Glycan Wash Buffer) 			
 Detection (Glycan Detection Mix) 			
Total	3.5 hrs	2 hrs	2 hrs

Assay protocol: human mAb

FOR OCTET RED96E, RED96, 384 AND HTX (8, 16 AND 96 CHANNEL SYSTEMS)

Option 1: No sidekick station

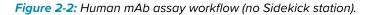


Table 2-4: Reagent preparation overview.

Reagent	Preparation
Human mAb (protein of interest)	1:10 or more dilution with glycan sample prep buffer
Glycan Sample Prep Buffer	1X
Anti-humanIgG Detection Anti- body (50X)	1:50 dilution with Sample Dilution Buffer
Glycan Detection Mix	See Glycan Detection Mix prep in Table 2-5
Glycan Wash Buffer	1X
Glycan Buffer A	1X

1. **Prepare the sample plate.** You can choose either a 96-well plate (200 μ L volume/ well), a 384-well plate (80 μ L volume/well) or a 384 tilted-well plate (40 μ L volume/ well) depending on your sample availability.

NOTE: All buffers and diluents used in this assay should be azide-free.

a. Pipette **Glycan Sample Prep Buffer** into the plate wells. Use 200 μ L for 96-well plates or 80 μ L for 384-well plates. The number of wells used should correspond to the number of samples being analyzed.

b. Pipette your **human IgG samples** prepared in Glycan Sample Prep Buffer into the next column of wells. Use 200 μ L for 96-well plates or 80 μ L for 384-well plates.

The POIs should be diluted <u>at least 1:10</u> using Glycan Sample Prep Buffer. This dilution is important to relax the glycoproteins so that terminal sialic acid can be accessible for binding to GlyS biosensor.

- c. Pipette **Anti-humanIgG Detection Antibody** prepared at <u>1:50 dilution</u> in Glycan Buffer A into the next column of wells. Use 200 μ L for 96-well plates or 80 μ L for 384-well plates.
- d. Pipette **Glycan Wash Buffer** into the next column of wells. Use 200 μ L for 96-well plates or 80 μ L for 384-well plates.
- e. Prepare Glycan Detection Mix. <u>Scale the Glycan Detection Mix volume up or</u> <u>down as needed based on your sample numbers</u>. In 960 μL of PBS buffer, add 25 μL of Glycan Detection Buffer and 15 μL of Glycan Detection Substrate to make 1 mL of Glycan Detection Mix (Table 2-5).

NOTE: The Glycan Detection Mix needs to be prepared fresh and we recommend it be used within 3-5 hours.

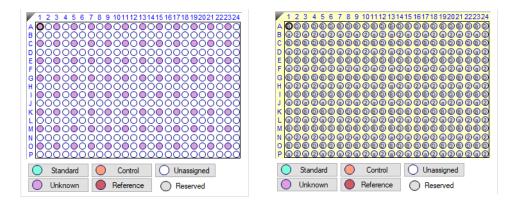
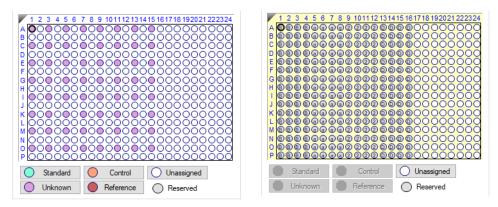

Glycan Detection Mix (1 mL)*	Volume
PBS buffer	960 μL
Glycan Detection Buffer (40X)	25 μL
Glycan Detection Substrate, (65X)	15 μL
Total Glycan Detection Mix	1000 μL (1 mL)

Table 2-5: Glycan Detection Mix preparation.


*Scale the Glycan Detection Mix volume up or down as needed based on your sample numbers.

Please refer to the material safety data sheet (SDS) for safety information on the Glycan Detection Substrate and Glycan Detection Buffer. Dispose of used and unused reagents in accordance with all local, state and federal guidelines. Proper personnel safety measures should also be taken when handling hazard-ous materials.

f. Pipette **Glycan Detection Mix** into the next column of wells. Use 200 μ L for 96well plates or 80 μ L for 384-well plates. Examples of 384-well sample and reagent plate layouts are shown in Figure 2-3 and Figure 2-4.

Figure 2-3: 96-channel mode using 384-well plates for the Octet HTX instrument. Left: sample plate. Right: reagent plate.

Figure 2-4: 16-channel mode using 384-well plates for Octet 384 and HTX instruments. Left: sample plate. Right: reagent plate.

- 2. **Pre-hydrate GlyS biosensors.** The number of GlyS biosensors used should correspond to the number of samples to be analyzed. There should be one full column of biosensors for each column (partial or full) of samples on the microplate.
 - a. Prepare a hydration plate by pipetting 200 μL of Glycan Buffer A into each well of a 96-well plate. Well locations filled with Glycan Buffer A in the hydration plate should correspond to biosensor locations on biosensor tray.
 - b. Carefully disassemble the green biosensor tray from its blue holder tray
 - c. Place the pre-hydration plate into the blue holder tray.
 - d. Place the green tray with biosensors back on top of the blue holder tray such that the biosensors are dipping into the wells of the pre-hydration plate.
 - e. Let sit for at least 10 minutes.
- 3. Run the assay.

- a. Place the sample plate (detection plate if using the Sidekick station) and the GlyS biosensor tray assembly in the Octet instrument in the designated positions.
- b. In Octet Data Acquisition software, select **Advanced Quantitation** to view Sialic Acid Method files.
- c. Select the appropriate method file based on your instrument capacity and availability of a Sidekick station.
- d. In the Plate Definition tab, define **well location**, **Sample ID**, **concentration** and **dilution factor** for each of the samples
- e. Ensure the plate definition matches the actual sample and reagent positions on the plate(s). Modify assay settings and/or plate definition if necessary.
- f. Ensure the Delay Start Time box is checked in the Run Experiment Tab. A 600second delay is recommended. A 300-second delay is required to enable the detection plate to equilibrate to 30 °C.
- g. Start the run. A full 96-well plate will take about 51 minutes to complete (including Sidekick station time).

Option 2: With a Sidekick Station



Figure 2-5: Human mAb assay workflow using a Sidekick station.

A Sidekick station is recommended for this assay as it decreases total online assay time and increases sample throughput for 8 and 16 channel systems. The Sidekick station is designed to mimic biosensor incubation in the Octet system at precise shaking speeds and temperatures.

NOTES:

Only 96-well plates can be used on the Sidekick station.

A Sidekick station is not required when running this assay on the Octet HTX system, since all steps can be performed on the instrument.

1. **Prepare samples and reagents.** See Step 1 in the human mAb assay protocol on page 15.

- 2. **Pre-hydrate GlyS biosensors using Glycan Buffer A.** Shake at 1000 rpm for 1 minute at 30 °C.
- 3. **Baseline.** Hydrate GlyS biosensors using Glycan Sample Prep Buffer. Shake at 1000 rpm for 3 minutes at 30 °C.
- 4. **Sample.** Capture sample of interest onto GlyS biosensors. Shake at 1000 rpm for 20 minutes at 30 °C.
- 5. **Detection Ab**. Perform the amplification step using Anti-hlgG Detection Antibody. Shake at 1000 rpm for 20 minutes at 30 °C.
- 6. **Detection plate**. Prepare Glycan Detection Mix and detection plate to run online on the Octet system.
 - a. Add 200 μL of Glycan Wash Buffer into Column 1, wells A-H, of a black, flat-bottom 96-well plate.
 - b. Add 200 μL of Glycan Detection Mix into Column 2, wells A-H, of the same plate.
- 7. Transition from Sidekick station to Octet system.
 - a. Once the Anti-hlgG Detection Antibody incubation is complete, remove the tray of GlyS biosensors from the Sidekick station.
 - b. Place the pre-hydration plate (step 1) containing Glycan Buffer A into the blue biosensor tray holder in the GlyS biosensor tray, and re-assemble the tray accessories by placing the GlyS biosensor tray on top so that the biosensor tips are soaking in Glycan Buffer A.
- 8. **Run detection steps on Octet system**. A full 96-well sample plate will take 1.5 hours using 8-channel mode or 48 minutes using 16-channel mode to complete.

Assay protocol: non-mAb

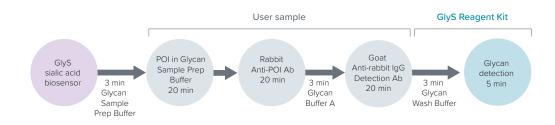


Figure 2-6: Non-mAb assay workflow.

Recommendations for this assay:

- An antibody against POI is required.
- A polyclonal antibody from rabbit works well in most cases.
- As a detection antibody, Goat-AntiRabbitIgG Detection Antibody (Jackson Immunoresearch, PN111-035-144 or equivalent; requires to be HRP-labeled) can be used at a 1:50 dilution (~20 μg/mL) in Glycan Buffer A.
- Follow the "Assay protocol: human mAb" on page 15 with the exception of adding antibody against the POI on the sample plate and a 20 minute incubation time for the same in assay parameters.

Assay protocol: Fc-fusion protein

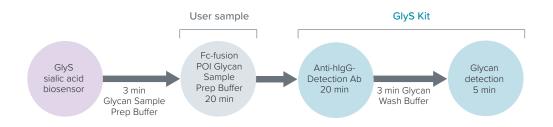


Figure 2-7: Fc-fusion protein assay workflow.

Recommendations for this assay:

 If the Fc-tag is from a non-human source, use an appropriate amplification Ab specific to the non-human Fc-tag. If the Fc-tag is from a human source, use the "Assay protocol: human mAb" on page 15. Since the glycosylation level will be different for each therapeutic protein under different conditions, the assay conditions and workflow should be adjusted as part of end-user assay optimization.

Assay protocol for direct assay: purified glycoprotein

A direct assay can be used for purified POIs. In a direct assay, no amplification steps are required. If the protein's level of glycosylation is low, the amplification assay workflow is recommended.

Figure 2-8: Direct assay workflow.

Table 2-6: Reagent preparation overview.

Reagent	Preparation
Glycan Buffer A	1X
Glycan Sample Prep Buffer	1X
Purified protein of interest	1:10 or more dilution with Glycan Sample Prep Buffer

1. Prepare the sample plate.

- a. Pipette 200 μ L of **Glycan Buffer A** into the wells of 96-well plate. The number of wells used should correspond to the number of samples being analyzed.
- b. Pipette 200 µL of Glycan Sample Prep Buffer into the next column of wells.
- c. Pipette 200 μ L of **purified POI** prepared in Glycan Sample Prep Buffer into the next column of wells. At least a 1:10 v/v dilution of POI in Glycan Sample Prep Buffer is required.
- 2. **Prepare the biosensor tray**. Biosensor locations should correspond to filled POI wells in the sample plate (one biosensor for each POI well in the sample plate).
 - a. Prepare a pre-hydration plate by pipetting 200 µL of Glycan Buffer A into each well of a 96-well plate. Well locations filled with Glycan Buffer A in the pre-hydration plate should correspond to biosensor locations in biosensor tray.

- b. Carefully disassemble the green biosensor tray from its blue holder tray.
- c. Place the pre-hydration plate into the blue holder tray.
- d. Place the green tray with biosensors back on top of the blue holder tray such that the biosensors are dipping into the wells of the pre-hydration plate.
- e. Let sit for at least 10 minutes.

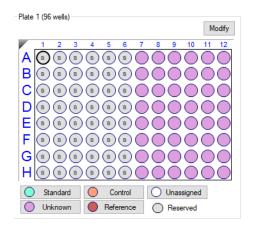


Figure 2-9: Example sample plate layout for purified POI direct assay.

3. Run the assay.

- a. In the Plate Definition tab, define **well location**, **Sample ID**, **concentration**, and **dilution factor** for each of the samples.
- b. Place the sample plate and GlyS biosensor tray assembly in the Octet instrument in their designated positions.
- In Octet Data Acquisition software, select Advanced Quantitation to view Sialic Acid Method files.
- d. Select the appropriate method file based on your instrument capacity.
- e. In the Plate Definition tab, define well location, Sample ID, concentration, and dilution factor for each of the samples if not done previously.
- f. Ensure the plate definition matches the actual sample and reagent positions on the plate(s). Modify assay settings and/or plate definition if necessary.
- g. Ensure the **Delay Start Time** box is checked in the Run Experiment Tab. A 600second delay is recommended. A 300- second delay is required to enable the sample plate to equilibrate to 30 °C.
- h. Start the run. A full 96-well plate of samples will take about 51 minutes to complete.

CHAPTER 3: Analysis

Glycan analysis		. 24
-----------------	--	------

Glycan analysis

LOADING DATA FILES

You can preview data in Octet Data Analysis HT software by clicking on the experiment data file in the Experiment Explorer window (Figure 3-1).

To load data for analysis, select the folder with your glycan data in the Experiment Explorer window. Both glycan experiment and Protein A titer data files should be overlaid together in the software as shown in Figure 3-1. We currently do not support standalone glycan experiments where titer information is not available. To load this type of experiment file, double click the titer data file or drag it into the Segment window. Then select the lectin data file in the Experiment Explorer window and right-click to overlay the data onto the titer data file.

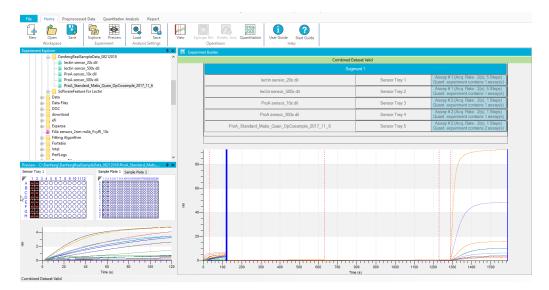


Figure 3-1: Loading Experiment Data

VIEWING THE DATA

 Click on the Preprocessed Data tab, and view Sialic Acid or Titer data by selecting Assay #1 or Assay #2 (Figure 3-2).

> **NOTE:** Sensor type, sample ID and dilution factor can be corrected in the Preprocess Data tab by selecting the wells on the sample or sample plate, right-clicking and selecting Edit Sample Info or Edit Sensor Info.

 You can do all reference subtractions by first assigning the reference wells and then right-clicking and selecting the type of subtraction: Subtract reference in selected wells or Subtract reference by column.

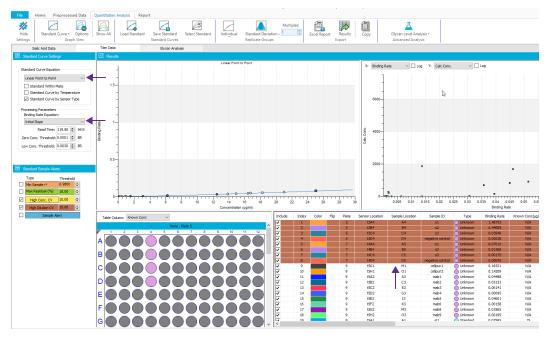

	ence Subtracti							 Quantitation Cycle a 	and Step Graphs							
Figure 1 and the second base wells in second well and the secon							Da	ta Cycles Quantitatio	n Sten							
Lisse 1: dot: and et angle reference vol() 1: dot: and et angle reference vol() : dot: and et angle reference vol() 1: dot: and et angle reference vol() : dot: and et angle reference vol() 1: dot: angle reference vol() : dot: angle reference vol() 1: dot: angle reference vol() : dot: angle reference vol() 1: dot: angle reference vol() : dot: angle reference vol() 1: dot: angle reference vol() : dot: angle reference vol() 1: dot: angle reference vol() : dot: angle reference vol() 1: dot: angle reference vol() : dot: angle reference vol() 1: dot: angle reference vol() : dot: angle reference vol() 0: dot: angle reference vol() : dot: angle reference vol() 0: dot: angle reference vol() : dot: angle reference vol() 0: dot: angle reference vol() : dot: angle reference vol() 0: dot: angle reference vol() : dot: angle reference vol() 0: dot: angle reference vol() : dot: angle reference vol() 0: dot: angle reference vol() : dot: angle reference vol() 0: dot: angle reference vol() : dot: angle reference vol() 0: dot: angle reference vol() : dot: angle reference vol()					raction							Processed	Data 🔍	5		
1 2 3 4 5 6 7 8 9 19 11 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Reset	Ungroup Sh	8	1. Select and set samp	le well(s) as refere	nce well(s) ups to determine sub	traction formul	11								
Image: control of the second	= Reference	Well 🔘 = Referer	ice Loading				wel 🔾=E	80-								
Image: control of the second	\bigcirc						^	-								
Constraints Server Type					$\bigcirc \bigcirc$	$\bigcirc \bigcirc$		60-								
Constraints rise Server Type Server Links Server Lin		OOO	\bigcirc		$\bigcirc \bigcirc$		E	-								
Column Servet for Number Serv	$\sum_{i=1}^{n}$		$\sum_{i=1}^{n}$		$\bigcirc \bigcirc$	$\bigcirc \bigcirc$		40								
Column Server hater Tere (a) 2 1 1 115 Ref-glack kod 4 1 1 15 Ref-glack kod 1 <			$\sum_{i=1}^{n}$		$\bigcirc \bigcirc$											
Column Server Later True (a) True (b) True (b) Additional Cycle and Skey Tables True (a) True (b) True (b) True (b) Column True (b) True (b) True (b) True (b) True (b) Column True (b) True (b) True (b) True (b) True (b) Column True (b) True (b) True (b) True (b) True (b) Column True (b) True (b) True (b) True (b) True (b) Column True (b) True (b) True (b) True (b) True (b) Column True (b) True (b) True (b) True (b) True (b) Column True (b) True (b) True (b) True (b) True (b) Column True (b) True (b) True (b) True (b) True (b) True (b) True (c) True (c) True (c) True (c) True (c) </td <td>$\mathcal{O}\mathcal{O}$</td> <td>$\bigcirc \bigcirc \bigcirc \bigcirc$</td> <td>$\mathcal{O}(\mathbf{x})$</td> <td></td> <td>$\bigcirc \bigcirc$</td> <td>$\bigcirc \bigcirc$</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	$\mathcal{O}\mathcal{O}$	$\bigcirc \bigcirc \bigcirc \bigcirc$	$\mathcal{O}(\mathbf{x})$		$\bigcirc \bigcirc$	$\bigcirc \bigcirc$		-								
Column Server Later True (a) True (b) True (b) Additional Cycle and Skey Tables True (a) True (b) True (b) True (b) Column True (b) True (b) True (b) True (b) True (b) Column True (b) True (b) True (b) True (b) True (b) Column True (b) True (b) True (b) True (b) True (b) Column True (b) True (b) True (b) True (b) True (b) Column True (b) True (b) True (b) True (b) True (b) Column True (b) True (b) True (b) True (b) True (b) Column True (b) True (b) True (b) True (b) True (b) Column True (b) True (b) True (b) True (b) True (b) True (b) True (c) True (c) True (c) True (c) True (c) </th <th>JC</th> <th>$) \bigcirc \bigcirc ($</th> <th>$\mathcal{O}($</th> <th></th> <th>$\bigcirc \bigcirc$</th> <th>$\bigcirc \bigcirc$</th> <th></th>	JC	$) \bigcirc \bigcirc ($	$\mathcal{O}($		$\bigcirc \bigcirc$	$\bigcirc \bigcirc$										
Vide Quantitation State Server Fuel Server Fuel Concentration(g)(f) Dutor Factor Fields and factor x Gold Server Fuel Tel 1.1 1.1 1.1.5 Reg Poliar Log Add 5.1 Add NA 20 C/Conferg/Darfing/Restinged/dat, 00212018[cm server_2xxxd](18021_001. 3 1 1.1 1.155 Reg Poliar Log 6.6 NA 20 C/Conferg/Darfing/Restinged/dat, 00212018[cm server_2xxd](18021_001. 3 1 1.1 1.155 Reg Poliar Log 6.6 3.0 C.Conferg/Darfing/Restinged/dat, 0212018[cm server_2xxd](18021_001. 4 1 1.1 1.155 Reg Poliar Log 6.6 NA 20 C/Conferg/Darfing/Restinged/dat, 0212018[cm server_2xxd](18021_001. 4 1 1.155 Reg Poliar Log 6.6 NA 20 C/Conferg/Darfing/Restinged/dat, 0212018[cm server_2xxd](18021_001. 5 2 1.1 1.155 Reg Poliar Log A111 NA 500 C/Conferg/Darfing/Restinged/dat, 0212018[cm server_2xxd](18021_001. 6 2																1
Color Sensor Number Tity Repertion Number Sensor Type Sensor Type Sensor Type Sensor Type Ref Vel Subtraction Formula Concentration/uginity Duttorn Fuctor Pile location 1 <	OC	$) \bigcirc \bigcirc ($	\bigcirc	$\underline{)00}$	$\underline{\bigcirc}$	$\bigcirc \bigcirc$	~	0	100 200 30	400	500 600	700		900	1000	100
1 1 11.5 Help-Galac.eds Ad. 11. Ad. N/A 20 C1/parting/Darting/Statisfication.012333 [frammer.20.4110811; U.S.1. 2 1 1 15. Help-Galac.edd B4 12. B6 N/A 20 C1/parting/Darting/Statisfication.012333 [frammer.20.4110811; U.S.1. 3 1 1 11.05 Help-Galac.edd C6 13 C6 N/A 20 C1/parting/Darting/Statisfication.012333 [frammer.20.4110811; U.S.1. N/A 20 C1/parting/Darting/Statisfication.012333 [frammer.20.411081]; U.S.1. N/A 20 C1/parting/Darting/Statisfication.012333 [frammer.20.411081]; U.S.1. N/A 20 C1/parting/Darting/Statisfication.012333 N/A 20 C1/parting/Darting/Statisfication.0123333 N/A 20 C1/parting/Darting/Statisfication.0123333 N/A 20 C1/parting/Darting/Statisfication.01233333 N/A 20 C1/parting/Dartin/parting/Stat			\bigcirc		00	$\bigcirc \bigcirc$	÷	0	100 200 30	400	500 600	700		900	1000	100
3 1 1 11:5 842-Seak Add 05 63 06 N/A 20 C/Dentring/Dentring/Bestimulous, 002:00198(end season) 004(BMS02_D04) 4 1 1 1205 Red_Oduc Add D6 negative control D6 N/A C/Dentring/Dentring/Bestimulous, 002:00198(end season) 201:00198(end season) 201:00198(ydes Quant	Itation Step	Tray	Repetition Number	Sensor Name	Sensor Type		0 Sample ID				700			1000	100
4 1 1 125 Ref_Selact.ed D6 negative control D6 NA C. ("Detring" (Detring" detailsmand-base, 2012.031 (Element sensor, 2nd (Element 1) 5 2 1 D25 Ref_Selact.ed A11 NA SC ("Detring" (Detring" detailsmand-base, 2012.031 (Element sensor, 2nd (Element 1) 6 2 1 D25 Ref_Selact.ed B11 42 B11 NA 500 C ("Detring" (Detring" detailsmand-base, 2012.031 (Element sensor, 2nd (Element 1) NA 500 C ("Detring" (Detring" detailsmand-base, 2012.031 (Element sensor, 2nd (Element 1) NA 500 C ("Detring" (Detring" detailsmand-base, 2012.031 (Element sensor, 2nd (Element 1) NA 500 C ("Detring" (Detring" detailsmand-base, 2012.031 (Element sensor, 2nd (Element 1) NA 500 C ("Detring" (Detring" detailsmand-base, 2012.031 (Element sensor, 2nd (Element 1) NA 500 C ("Detring" (Detring" detailsmand-base, 2012.031 (Element sensor, 2nd (Element 1) NA 500 C ("Detring" (Detring" detailsmand-base, 2012.031 (Element sensor, 2nd (Element 1) NA 500 C ("Detring" (Detring" detailsmand-base, 2012.031 (Element sensor, 2nd (Element 1) NA 500 C ("Detring" (Detring" detailsmand, 2012.031 (Element sensor, 2nd (Element 1)	ydes Quant	station Step Sensor Number 1	1		t1A5	RelQ-Sialic Acid	Sample Location	51	Ref Well Subtraction Formula A6	Concentration(µg/ml) N/A	Dilution Factor 20	C:\Danfeng\Dar	Time (8)	File location Data_08212018Ver	ctin sensor_20x di	\180821_001.f
5 2 1 1235 Rel2-Balk Add A11 s1 A11 N/A 500 C. ("parting" parting balk and balk	ydes Quant	Sensor Number 1 2	1		t1A5 t1B5	RelQ-Sialic Acid RelQ-Sialic Acid	Sample Location A6 B6	s1 s2	Ref Well Subtraction Formula A6 B6	Concentration(µg/ml) N/A N/A	Dilution Factor 20 20	C:\Danfeng\Dan C:\Danfeng\Dan	Time (8)	File location Data_08212018\ler Data_08212018\ler	ctin sensor_20x di	\180821_001.1
6 2 1 (25 Red)-Sake Ad 811 e2 811 N/A 500 C (Derlerg/Derlerg/Restarding-Lag) (2013) (21 e3 Red)-Sake Ad C (11 e3 C11 N/A 500 C (Derlerg/Derlerg/Restarding-Lag) (2013) (21 e1	ydes Quant	Sensor Number 1 2 3	1 1 1		t1A5 t1B5 t1C5	RelQ-Sialic Acid RelQ-Sialic Acid RelQ-Sialic Acid	Sample Location A6 B6 C6	s1 s2 s3	Ref Well Subtraction Formula A6 B6 C6	Concentration(µg/ml) N/A N/A N/A	Dilution Factor 20 20	C:\Danfeng\Dar C:\Danfeng\Dar C:\Danfeng\Dar	Time (8) IfengRealSampleE	File location Data_08212018\lex Data_08212018\lex Data_08212018\lex Data_08212018\lex	ctin sensor_20x di ctin sensor_20x di ctin sensor_20x di	\180821_001.1 \180821_002.1 \180821_003.1
	ydes Quant	Sensor Number 1 2 3 4	1 1 1 1 1		t1A5 t1B5 t1C5 t1D5	RelQ-Sialic Acid RelQ-Sialic Acid RelQ-Sialic Acid RelQ-Sialic Acid	Sample Location A6 B6 C6 D6	s1 s2 s3 negative control	Ref Well Subtraction Formula A6 B6 C6 D6	Concentration(µg/ml) N/A N/A N/A N/A	Dilution Factor 20 20 20	C:\Danfeng\Dan C:\Danfeng\Dan C:\Danfeng\Dan C:\Danfeng\Dan	Time (8)	File location Data_08212018\ler Data_08212018\ler Data_08212018\ler Data_08212018\ler Data_08212018\ler	ctin sensor_20x di ctin sensor_20x di ctin sensor_20x di ctin sensor_20x di	\180821_001. \180821_002. \180821_003. \180821_004.
8 2 1 CD9 RelC sale Acid D11 negative control D11 N/A C:[Danfing/Danfing/Balling/BCtuba_00212018/jectin series/_SD0.4[U0031]_004	ydes Quan k Color	station Step Sensor Number 1 2 3 4 5 6	1 1 1 2 2		t1A5 t1B5 t1C5 t1D5 t2A5 t2B5	RelQ-Stalic Acid RelQ-Stalic Acid RelQ-Stalic Acid RelQ-Stalic Acid RelQ-Stalic Acid RelQ-Stalic Acid	Sample Location A6 B6 C6 D6 A11 B11	s1 s2 s3 negative control s1 s2	Ref Well Subtraction Formula A6 B6 C6 D6 A11 B11	Concentration(µg/ml) N/A N/A N/A N/A N/A N/A	Dilution Factor 20 20 20 500 500	C:\Danfeng\Dan C:\Danfeng\Dan C:\Danfeng\Dan C:\Danfeng\Dan C:\Danfeng\Dan C:\Danfeng\Dan	Time (s) IfengRealSampleE IfengRealSampleE IfengRealSampleE fengRealSampleD fengRealSampleD	File location Data_08212018/jer Data_08212018/jer Data_08212018/jer Data_08212018/jer Data_08212018/jer Data_08212018/jer	ctin sensor_20x di ctin sensor_20x di ctin sensor_20x di ctin sensor_20x di tin sensor_500x di tin sensor_500x di	\180821_001.4 \180821_002.4 \180821_003.4 \180821_004.4 \180821_001.4 \180821_001.4
	ydes Quan k Color	Sensor Number 1 2 3 4 5 6 7	1 1 1 2 2 2	1 1 1 1 1 1 1	t1A5 t1B5 t1C5 t1D5 t2A5 t2B5 t2C5	RelQ-Sialic Acid RelQ-Sialic Acid RelQ-Sialic Acid RelQ-Sialic Acid RelQ-Sialic Acid RelQ-Sialic Acid RelQ-Sialic Acid	Sample Location A6 B6 C6 D6 A11 B11 C11	s1 s2 s3 negative control s1 s2 s3	Ref Well Subtraction Formula A6 B6 C6 D6 A11 B11 C11	Concentration(µg/ml) N/A N/A N/A N/A N/A N/A N/A	Dilution Factor 20 20 20 500 500	C: (Danfeng (Dan C: (Danfeng (Dan C: (Danfeng (Dan C: (Danfeng (Dan C: (Danfeng (Dan C: (Danfeng (Dan C: (Danfeng (Dan	Time (s)	File location Data_08212018/jet Data_08212018/jet Data_08212018/jet Data_08212018/jet Data_08212018/jet Data_0822018/jet Data_0822018/jet	ctin sensor _20x di ctin sensor _20x di ctin sensor _20x di tin sensor _20x di tin sensor _50x di tin sensor _50x di tin sensor _50x di	\180821_001. \180821_002. \180821_003. \180821_004. (\180821_004. (\180821_002. (\180821_002.

Figure 3-2: Viewing Sialic Acid and Titer Data

PROCESSING DATA

- 1. Click on the Quantitation Analysis tab.
- 2. Click on the **Titer Data** tab.
- 3. In the Standard Curve Equation window, select either 4-parameter logistic (4PL) weighted or unweighted, or 5-parameter logistic (5PL) weight or unweighted fit, and then the source for standard curve.

A separate standard curve can also be loaded by clicking \Box (Load Standard) (Figure 3-3).

Figure 3-3: Selecting the Binding Rate Equation, Source for Standard Curve and Titer Concentration Data

- 4. Select R equilibrium as the Binding Rate Equation.
- 5. Pick the titer concentration data with desired dilution factors by checking or unchecking the **Include** box next to the rows in the table (Figure 3-3).
- 6. Click 🦻 (Results) to export the Protein A titer data.
- 7. Click on the Glycan Analysis tab.
- 8. Pick the glycan analysis data with desired dilution factors by checking or unchecking the box next to the rows in the table (Figure 3-4). The top graph on the right shows the titer information for all the samples, the middle graph is the Sialic Acid content of the samples and the bottom graph is the normalized binding signal (sialic acid content divided by the titer info for each sample).

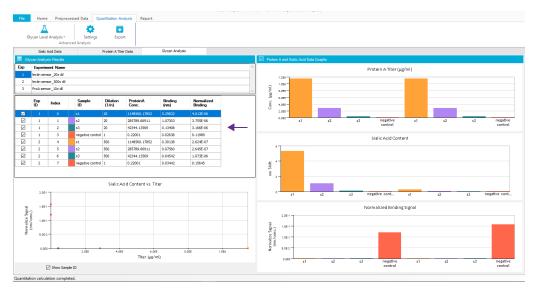


Figure 3-4: Picking Glycan Analysis Data

9. Click [•] (Settings) if a sample had multiple dilutions in the quantitation assay and one of the dilutions needs to be excluded(Figure 3-4). You can then exclude data in the Raw concentration data table (Figure 3-5).

r Co	ncentrati	on Data						Averaged Pro.	A Concentra	tion Data		
	Index	Exp ID	Exp Index	Sample ID	Dilution	Conc. Unit	ProA Conc. /	· Value Aver	aged 🚺 -	Values Differ >50%		
	0	1	0	A301	50	µg/ml	1663.24240		Undiluted	Conc		
M	1	1	8	A309	50	µg/ml	1475.71558	Sample ID	ProteinA Conc	Unit		
M	2	1	1	A302	50	µg/ml	1478.51421	A301	1663.24240	ua/mi		
Ø	3	1	9	A310	50	µg/ml	2108.10423	A309	1475.71558	uq/ml		
Ø	- 4	1	2	A303	50	µg/ml	1161.34286	A302	1478.51421	µg/ml		
	5	1	10	A311	50	µg/ml	702.03999	A310	2108.10423	ug/ml		
	6	1	3	A304	50	µg/ml	1783.33934	A303	1161.34286	ug/ml		
	7	1	11	A312	50	µg/ml	1403.64464	A311	702.03999	µg/ml		
M	8	1	4	A305	50	µg/ml	1642.48003	A304	1783.33934	µg/ml		
Ø	9	1	12	A313	50	µg/ml	1425.70326	A312	1403.64464	µg/ml		
Ø	10	1	5	A306	50	µg/ml	1895.38739	A305	1642.48003	µg/ml		
Ø	11	1	13	A314	50	µg/ml	1575.09888	A313	1425.70326	µg/ml		
	12	1	6	A307	50	µg/ml	1660.36479	A306	1895.38739	µg/ml		
	13	1	14	A315	50	µg/ml	1039.90481	A314	1575.09888	µg/ml		
Ø	14	1	7	A308	50	µg/ml	1264.50880	A307	1660.36479	µg/ml		
	40		40	4040	en.	constant.	2002.20044	A315	1039.90481	ua/ml		

Figure 3-5: Raw Concentration Data

10. Click the **Export** button to export the glycan analysis data.

GENERATING THE GLYCAN ANALYSIS REPORT

1. In the Report tab, click (Text) to record lot number and expiration date for the GlyS (Sialic Acid) (Figure 3-6).

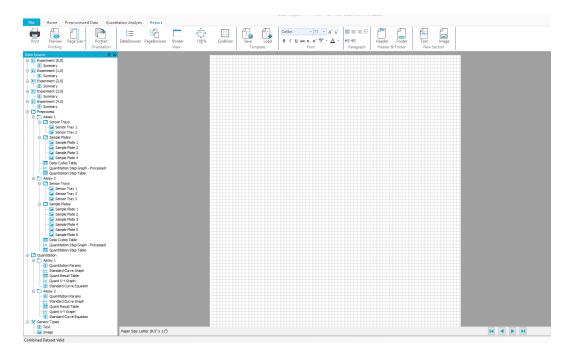


Figure 3-6: Generating the Glycan Analysis Report

2. Drag the information from the Data Source window to the Report grid to complete the report. An example is shown in Figure 3-7.

Sensor Type: GlyS Biosensor Lot Number: 489375 Expiration Date: 5/2/2019

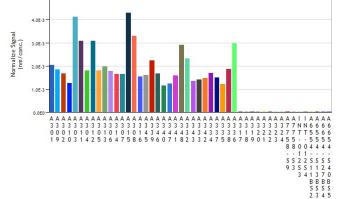


Figure 3-7: Example Glycan Analysis Report

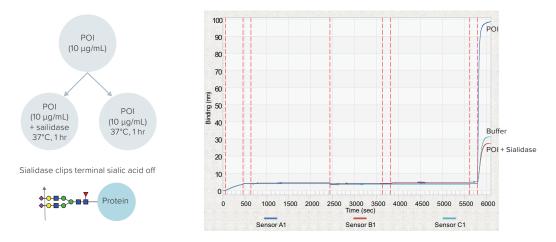
GlyS Kit User Guide

CHAPTER 4: Additional Assay Guidelines

Control samples	
Confirmation of signal by sialidase digestion assay	

Control samples

Fetuin (non-mAb) and NIST (mAb-RM8671, NIH) are recommended as controls to confirm signal from the GlyS Kit. Both fetuin and NIST are well-studied and characterized for their sialic acid content and have publicly available literature. These should only be used as controls and not as standards for absolute quantitation; the GlyS Kit is intended for relative screening only.


Recommended concentrations for fetuin are 500 μ g/mL and 7 μ g/mL. Follow the "Assay protocol for direct assay: purified glycoprotein" on page 21 for fetuin.

Recommended concentrations for NIST are <10 $\mu g/mL$. Follow the "Assay protocol: human mAb" on page 15 for NIST.

Confirmation of signal by sialidase digestion assay

NOTE: Sialidase (N2876 Sigma; 25U powder) stock can be prepared by dissolving the powder in 1 mL ddH2O. This will make 25 U/mL stock. Aliquot small volumes in Eppendorf tubes and store in -20 °C.

Add 10 μ L of 25 U/mL sialidase stock to your POI for 96-well sample plate or 4 μ L of 25 U/mL sialidase stock to your POI for a 384-well sample plate. Incubate at 37 °C for 1 hour. Digested samples should show no signal or reduced signal compared to undigested samples. An example of a sialidase digestion assay is shown in Figure 4-1. The non-treated sample exhibits a strong binding signal using GlyS Kit. However, the sialidase treated sample exhibits a diminished binding signal, confirming the binding specificity of GlyS Kit towards terminal sialic acid.

Figure 4-1: Sialidase digestion workflow and sialidase digestion data example.