

Error! Use the Home tab to apply Headline_1 (Headlines) to the text that you want to appear here.

ODBC SimApi User Guide
October 24, 2024

Introduction

Contents
1 Introduction .. 3

1.1 Features .. 3
1.1.1 Synthetic process batch id ... 4
1.1.2 Generated synthetic process batch id tags; one per unique Unit ID ... 4
1.1.3 Batch node with filtering support ... 4
1.1.4 Batch Data Views ... 5
1.1.5 Discrete data .. 6
1.1.6 Concurrent SimApi Access ... 7

2 Prerequisites .. 7
2.1 Database structure requirements ... 7
2.2 Database performance considerations .. 7
2.3 Networking considerations .. 8
2.4 ODBC Drivers .. 8
2.5 Database authentication ... 8
2.6 Visual C++ Redistributable ... 8

3 Installation and setup .. 9
3.1 Configuring an ODBC data source connection in Windows for use by the SimApi 9
3.2 Selecting between two ways to access process data ... 10
3.3 XML configuration file and log file locations .. 11
3.4 Global connection settings ... 11
3.5 Direct Mode for continuous/process views .. 11
3.6 Lookup View Mode for continuous/process views .. 12

3.6.1 PDB views and HDB views ... 13
3.7 Batch node ... 14
3.8 Batch Data Views .. 15

3.8.1 Synthetic batch data instance tags ... 16
3.8.2 Synthetic process batch id tags filtered on column values ... 16

3.9 Discrete nodes ... 16
3.9.1 Discrete Tag Definition View ... 17
3.9.2 Discrete data as seen by SIMCA-online ... 18

3.10 Some notes on SIMCA-online Write Back .. 18
3.11 XML Configuration File ... 19

4 Support .. 22

Introduction

1 Introduction
This document is the user guide for the ODBC SimApi from Sartorius Stedim Data Analytics.

A SimApi is the connection between the Umetrics Suite and external data sources.

This SimApi connects to an ODBC (Open Database Connectivity) data source such as a relational database. The
data source must be structured as described in this document.

To use a SimApi in SIMCA-online which is used for real-time monitoring, it is important that the data source
behaves as a good process data historian: There must be no data acquisition delays in the data source: current
data in the data source should reflect the current state of the process to work well in SIMCA-online. The data
source must also respond quickly to requests for data so that the server will be able to keep up with real-time
execution of projects.

For a detailed list of changes in different versions of this SimApi, see the Version Info.txt file that comes with
the installation.

This SimApi can be used by SIMCA or SIMCA-online or other software that can use SimApis.

For more information on available SimApis, see sartorius.com/umetrics-simapi.

1.1 Features
• Supports SQL dialects for Microsoft SQL Server, Oracle, Microsoft Access, IBM db2, Denodo, MySQL,

PostgreSQL and standard SQL.
• ODBC connection string authentication with a provided username and password, Windows

authentication or the credentials specified in the ODBC connection in Windows ODBC Data Sources.
• Accessing multiple tables or views for reading continuous process data (current and historical). Two

modes; Lookup view mode and Direct Mode (reading directly from a database view).
• Multiple batch nodes, defining the lifetime of batches. Contains a single row for each batch with start-

and end times.
• Reading batch data (batch conditions) from additional columns in batch nodes, or from Batch Data

Views that store batch conditions in a narrow table with only two columns (tag name and value).
• Discrete data support: reading discrete data one or more nodes, that may have different column names.
• Write back from SIMCA-online: historical process data and batch data.
• Works with numerical data or text (qualitative) data.
• Synthetic process batch id in the batch node, which can be used in SIMCA-online phase execution

conditions, if the process data doesn’t have a batch id tag.
• Synthetic process batch id tags in Batch Data Views that can be filtered by other columns. Can be used

in phase conditions when the batch id is otherwise not available in the process data.
• Batch nodes with filtering support. Filtering support is useful when you have a batch node with a master

list of batches for your entire system but want to be able to filter it to show only batches in a part of the
system (such as batches running in a single unit, or a batch of a specific material or type).

• Synthetic batch data instance tags handle multiple measurements of batch data per batch. Useful if
you want to be able to create batch level models that use two or more measurements of each batch
condition variable per batch.

• Multiple instances of the ODBC SimApi to be configured and used from the same SIMCA-online
server. This lets you connect to multiple databases on one or more database servers.

• Connection resiliency – the SimApi automatically reconnects to a data source after it has been
disconnected (for example after a network glitch).

• Thread-safe concurrent access. The SimApi works with the Concurrent SimApi access feature
introduced with the SIMCA-online 18 server which can improve performance and responsiveness.

• Supports dates stored as local times or UTC in database.

Each feature (continuous, batch or discrete) can be configured and used on its own, and all features are
optional. You need not configure features unless you need them.

https://www.sartorius.com/umetrics-simapi

Introduction

1.1.1 Synthetic process batch id
In a batch project, the process data must have a batch id tag (column) that is specified on the Execution
conditions page in the project configuration in SIMCA-online. This tag is matched against the batch node to
know if a phase should execute.

If the process data doesn’t have a batch id tag, the ODBC SimApi feature synthetic process batch id can be
used. It generates the process data batch id using data from the batch node.

To use this feature, go to the Execution conditions page and configure the Batch identifier tag to be the batch
id of the batch node. Whenever the server reads the batch id for the process data, the synthetic batch id from
the batch node will be returned ensuring that the unit will execute.

Note that this feature does not work with concurrent (parallel) batches. Thus, for any given time there must be
only one batch active in the batch node.

1.1.2 Generated synthetic process batch id tags; one per unique Unit ID
This feature builds on the synthetic process batch id described above but uses an additional column in the
batch node that contains the UnitID. The batch node is segmented into classes of batches that share the same
value in the UnitID column. This acts like a for batches in the batch node that have a certain value for UnitID.

For each unique value in the UnitID column (looking in the entire batch node) the SimApi creates a synthetic
tag in the batch node with the name BatchID_Unit_[Value].

For example: if values 1 and 2 are the two unique values in the UnitID column, it will result in two synthetic tags;
BatchID_Unit_1 and BatchID_Unit_2. Reading process data from the synthetic batch id tag BatchID_Unit_1 will
return only batch ids for batches whose UnitID column has the value 1. Batches with 2 in the UnitID column will
be ignored.

To use this, you configure the Batch identifier tag in the Execution Conditions page for each unit to use the
synthetic BatchID_Unit_[Value] tags.

The name of the unit id column is configured in the XML file.

Restrictions

• As for the regular synthetic batch id described above, by extension, this does not work with concurrent
(parallel) batches sharing the same value of UnitID (concurrent batches with different UnitIDs works
fine).

• All unit ids must be specified in the batch node before the SimApi is started (the synthetic tags are
created at startup). Tip: you can prepopulate a table with one dummy batch in the batch node for each
unit id that will be required.

• Batch ids must be unique in the batch node and there can be only one row for each batch id. Therefore,
each batch can only have one value of UnitID.

• The value of UnitID must not change for a specific batch during its lifetime.

Note: an alternative to using a synthetic process batch id filtered by UnitID like this is to use multiple batch
nodes; one for each unique value of UnitID. In the case of multiple batch nodes, the same batch id can of
course be present in many batch nodes (unlike when the UnitID filter is used) so in some cases multiple batch
nodes are the preferred solution.

1.1.3 Batch node with filtering support
A batch node is needed in SIMCA-online to execute batch projects.

Filtering is useful when you have a batch node with a master list of batches for your entire system but want to
filter it to show only batches in a part of the system (such as batches running in a single unit, or product of a
certain material or type).

Introduction

Filtering is optional and to use it you must specify the column to filter on and specify a list of valid values for that
column. For each configured value, a separate node is created by the SimApi containing only batches with that
value in the filter column.

Here is an example of a batch view, called BatchNode in the database, with a Unit column that can be used to
filter batches.

BatchID StartTime StopTime Unit (Filter column) Batch condition variable 1

Batch1 2017-01-01 01:00 2017-01-01 11:00 A 34

Batch2 2017-01-02 02:00 2017-01-02 12:00 B 4

Batch3 2017-01-03 03:00 2017-01-01 13:00 A 12

Batch4 2017-01-04 04:00 2017-01-04 14:00 A 4

Batch5 2017-01-05 05:00 2017-01-05 15:00 B 5

Configured for unit A and B this would give two batch nodes named BatchNode_A and BatchNode_B. Each of
those batch nodes would only return batches that corresponds to their filter value so for BatchNode_A Batch1,
Batch3 and Batch4 would be returned and for BatchNode_B Batch2 and Batch5 would be returned. The last
column is an example of a batch condition variable that will be available in this batch node to read batch level
data from.

Synthetic process batch ids are supported for batch nodes configured in this way.

1.1.4 Batch Data Views
A batch data view is a database view or table for storing values for batch conditions. It should have three
columns: Batch identifier, Tag name and Value. One row in that view stores a value for a specific tag and batch.
There will be many rows in this view for each batch when there are many batch condition variables.

Here’s an example of a batch data view in the database with its three columns:

BatchID Tag name Value

Batch7 Yield 0.95

Batch7 ProductQuality Excellent

Batch8 Yield 0.90

Batch8 ProductQuality Poor

This batch data view will be exposed through the SimApi as two tags Yield and ProductQuality. Reading values
for those tags for Batch8 would result in the values 0.90 and “Poor” respectively.

Note: If there are multiple rows for the same BatchID and Tag name combination in the database view, the
SimApi will return the value from the last of those rows.

There are no batch start or batch end times columns in batch data views, so they cannot be used as batch
nodes.

You can configure many different batch data views.

Tip: As an alternative to Batch Data Views, batch condition data can also be stored in a batch node. In that case
one column is needed for each batch condition variable. Thus, there will only be one row for each batch in batch
nodes, but more columns are needed.

Introduction

Important for SIMCA-online’s Extract functionality: To extract data from a batch data view you need to also
include one tag (such as the Batch Identifier tag) from a batch node, so that SIMCA-online can know the
batches to extract data for.

1.1.4.1 Synthetic batch data instance tags
Batch data always consists of a single observation per batch1.

But what if the values of a batch data tag might change (for example because you rerun some measurement)
and if you want to use multiple measurements per batch in a SIMCA-online batch level model?

Then you can use the optional feature synthetic batch data instance tags. These are tags that are added as
additional tags in the batch data view, each mapping to a particular instance of the batch data for the tag.

Here’s an example:

BatchID TimeColumn Tag name Value

Batch7 2015-06-23 09:00 Yield 0.90

Batch7 2015-06-23 17:00 Yield 0.99

The SimApi will then expose this batch data view with two tags; Yield_1 and Yield_2. When data is read for the
batch Batch7 it will result in the values 0.90 for Yield_1 and 0.99 for Yield_2.

Notice that there is a new TimeColumn added in this example, with a timestamp for each row. This column is
required for the synthetic batch data instance tag feature, for the SimApi to know how to order the values for
the tags into the instance tags.

1.1.4.2 Synthetic process batch id tags filtered on column values
This feature is like the Generated synthetic process batch id tags; one per unique Unit ID with the difference
that this is read from a batch data view and the batch id can be filtered on multiple columns.

Here’s an example:

BatchID TimeColumn Tag name Value Unit Line

Batch7 2015-06-23 09:00 Yield 0.90 A 1

Batch8 2015-06-23 09:00 Yield 0.95 B 2

If we filter the BatchID on columns Unit and Line that would give us one synthetic batch id tag for each unique
combination of the values from columns Unit and Line.

Synthetic tags created would be: BatchID_A_1, BatchID_B_2

Hence reading BatchID_A_1 for the time in the table would give the value Batch7, for the same time
BatchID_B_2 would give the value Batch8.

Notice that a time column with a timestamp for each row is required for this feature.

1.1.5 Discrete data
Discrete data is infrequently measured data which have no logical values in between measurements. Usually, a
sample is taken on each batch at semi-regular intervals (such as once a day). This sample is then sent to a lab
which performs analysis on the sample and at a later stage returned with a report on the sample for the required
variables. This is then entered in the database in the discrete data table.

Learn more on this in the SimApi Guide and SIMCA-online Technical Guide.

1 For more information about the different data retrieval modes, of which batch data is one, see the SimApi Guide.pdf.

Prerequisites

1.1.5.1 Synthetic batch age tags for discrete data nodes
For discrete data nodes there are four synthetic tags named $BatchAge(d), $BatchAge(h), $BatchAge(m),
$BatchAge(s). When reading their values, they will be the batch age as a floating-point number for each sample
in four different magnitudes: days, hours, minutes, and seconds respectively. These tags can be used as maturity
in the SIMCA model, reducing the need to explicitly add and populate such tags to the discrete data tables.

1.1.6 Concurrent SimApi Access
Concurrent SimApi access is an optional feature introduced with the SIMCA-online 18 server which can
improve performance and responsiveness of a server and clients.

The ODBC SimApi is thread-safe and uses a pool of connections to the server. The size of the pool is
configurable using the DatabaseConnectionPoolSize setting in the configuration file (defaults to 10). This
controls how many concurrent requests to the database are allowed. Additional concurrent requests are
queued and performed as earlier requests finish.

Different database engines and different database servers may support a different number of concurrent
threads. For optimal performance, the connection pool size may have to be adjusted.

Learn more considerations and how to enable this in the SIMCA-online help on Concurrent SimApi Access.

2 Prerequisites
For this SimApi to work there are requirements that need to be fulfilled, both for the PC running the SimApi and
for the data source itself relating to database structure and performance.

2.1 Database structure requirements
A database can of course contain almost any data with an arbitrary structure. The ODBC SimApi is built for
obtaining process data for use in SIMCA-online and SIMCA.

For the SimApi to work the database needs to have a particular structure or design as described below.

Here are general requirements:

• All tables used has a unique primary key.
• Most tables in the database require a date/time columns so that the SimApi can identify the timestamp

for each row of data. This column should be indexed in the database so that performance won’t suffer.
• The SimApi supports two data types for data columns: either numerical real values (a float or other

numerical datatype) or text strings (for example varchar in the database). Missing values (nulls) are also
allowed for data columns.

• The term view and table are used interchangeably in this document to mean the same thing.
• If you create a view in the data source and want to use that in the SimApi, be careful to not introduce

performance issues: the view must be quick to access by the SimApi. This means you typically cannot
create a complex view that aggregates data from many other tables and performs complicated business
logic to compute the results. Such a view won’t fulfil the performance requirements of the users of the
SimApi such as SIMCA-online used for real-time monitoring of a process.

The SimApi has many features, and each feature has various required settings that needs to be made, as
described in chapter 3.

2.2 Database performance considerations
To use a SimApi in SIMCA-online which is used for real-time monitoring, it is important that the data source
behaves as a good process data historian.

• There must be no data acquisition delays in the data source: current data in the data source should
reflect the current state of the process to work well in SIMCA-online.

Prerequisites

• The data source must also respond quickly to requests for data so that the server will be able to keep up
with real-time execution of projects.

This has several implications:

• Data warehouses or databases that perform data aggregation may not work well with SIMCA-online for
real-time project execution, because they might introduce data acquisition delays.

• Database views that perform complicated and time-consuming queries risk being too slow for use in
SIMCA-online.

2.3 Networking considerations
You should locate the SIMCA-online server close to the data source in the network. This ensures a fast
connection between SIMCA-online and its data source.

Networking equipment, such as firewalls, may interfere with the connection between SIMCA-online and the
data source. If this is the case firewall rules may have to be modified.

Verify connectivity from the PC running the SimApi to the data source using for example the Test Connection
button in ODBC Data sources.

2.4 ODBC Drivers
The SimApi requires ODBC drivers for your data source to be installed on the PC where the SimApi is installed.

ODBC drivers are obtained from the manufacturer of the database. Download and install the latest available
version. Drivers for Microsoft SQL Server are often already installed on most Windows computers.

You need the drivers that match the platform of the SimApi. Typically, this means 64-bit x64 drivers to be used
with 64-bit Windows and SIMCA and SIMCA-online. For old 32-bit SIMCA versions, the 32-bit ODBC drivers
are required.

2.5 Database authentication
Databases require authentication for the SimApi to be able to access data so that only the data that is needed
by the SimApi can be accessed by it. Database administrators limit the access in the database to a specific user
used by the SimApi.

User authentication can be done in one of three ways with the ODBC SimApi:

1. Specifying the username and password in the SimApi Configuration dialog. The credentials are stored
in encrypted format on the PC.

2. Specifying the username and password in the ODBC connection created in ODBC Data sources (see
below). This stores the credentials in Windows.

3. Not specifying credentials explicitly, but instead using Windows Authentication and the user account
that runs the SimApi. For desktop SIMCA, this means the user running SIMCA, and for SIMCA-online
this means the SIMCA-online service account configured in Windows services.

Chapter 3 shows how to configure the SimApi.

2.6 Visual C++ Redistributable
To use the SimApi on a computer, it must have the following software installed:

• The Microsoft Visual C++ Redistributable for Visual Studio 2015-2022. This is already available on all
computers with recent versions of SIMCA or SIMCA-online. To run the SimApi in other contexts, the
latest version is found at https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-
redist?view=msvc-170#visual-studio-2015-2017-2019-and-2022

https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170#visual-studio-2015-2017-2019-and-2022
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170#visual-studio-2015-2017-2019-and-2022

Installation and setup

3 Installation and setup
The SimApi Guide downloadable from sartorius.com/umetrics-simapi contains good background information
on SimApis how install, configure, troubleshoot, and test a SimApi. You may want to refer to this document to
learn more about various topics.

To install and configure this SimApi, perform these steps:

1. Install ODBC drivers for your database engine (see chapter 2).
2. Set up an ODBC database connection in Windows ODBC Data Sources and test it to make sure it

works (detailed steps in the next section).
3. Install the SimApi on the PC using its installation program: (for detailed instructions, see chapter 5 in

the SimApi Guide):
a. Start by uninstalling any previous version in Windows Apps and Features before installing the

new one.
b. Unzip the zip file, consult the Version Info.txt file and the user guide (which you’re reading

now…).
c. Run the setup exe file to install the SimApi.

4. If the Visual C++ Redistributable on the PC isn’t up to date, install the most recent version (see 2.6).
5. Add the SimApi to SIMCA or SIMCA-online, as described in chapter 5 in the SimApi Guide.

a. When you click the button to configure the SimApi you will get this dialog to provide
credentials to use (learn about the options in the previous chapter):

b. All other settings for this SimApi are made manually in an XML file using a text editor. How

to configure each feature is described later in this chapter.
6. Test the SimApi. See chapter 6 in the SimApi Guide.

3.1 Configuring an ODBC data source connection in Windows for use
by the SimApi

The SimApi requires a configured ODBC data source connection to work.

You create this in the ODBC Data Sources control panel in Windows. There are two versions of this tool on 64-
bit Windows: one for 32-bit applications and one for 64-bit. Use the one the matches the SimApi you are using,
typically 64-bit since all recent versions of SIMCA-online and SIMCA are 64-bit and require the 64-bit SimApis
variants.

This screenshot shows this application in Windows. There are three different database connections in this
example. The below dialog shows the first page of the configuration wizard for the SQL Server connection to
the server se01wssuite01:

https://sartorius.com/umetrics-simapi

Installation and setup

Usage guidelines:

• We recommend that you configure your data sources as System DSNs as displayed in the screenshot.
This ensures they are available for all users of the PC including services such as SIMCA-online.

• Click Add to add a new connection. Select the driver to use which you installed as described in the
previous chapter, matching your database, and click through the wizard and configure settings to
connect to your database server.

• At the end of the wizard, you can try the Test Data Source button to verify connectivity to the database.
This of course won’t work if you provide the username and password in the ODBC itself (see previous
chapter).

3.2 Selecting between two ways to access process data
There are two ways to access process data in this SimApi:

1. Direct Mode. In this mode you specify the view names that should be exposed through the SimApi.
Each view becomes a node in the SimApi, and all columns in a view become tags. Direct Mode is
recommended since it is relatively simple to use.

Installation and setup

2. Lookup View Mode. This mode is more complex and requires a specific view in the database called a
Lookup View. This view defines the tags that should be exposed through the SimApi, but data is taken
from additional related views specified for each row of data in the lookup view.

Learn more about how to set up these and all other features of the SimApi below. Refer back to chapter 1.1 to
read more about features of this SimApi that you’re configuring below.

3.3 XML configuration file and log file locations
A SimApi stores its log files in the hidden Program Data folder2: %programdata%\Umetrics\SimApi, where
%programdata% maps to the actual folder on your computer. It defaults to C:\ProgramData.

This contains the SimApi settings in an XML file named ODBCSimApi_<InstanceName>.xml. You can edit this
file manually using a text editor such as Notepad to make changes.

Each SimApi typically uses its own log file, which similarly to the SIMCA-online server log file will contain data
depending on a log level setting. This file is useful for troubleshooting.

The log file is named ODBCSimApi_<InstanceName>.log.

<InstanceName> is the name of the SimApi instance you added in SIMCA-online Server Options or Default for
desktop SIMCA. For example, if you added named the instance “MyDB” the log file name will be
ODBCSimApi_MyDB.log. Learn more about this in 4.2 – 4.3 in the SimApi Guide.

3.4 Global connection settings
The first section of the XML configuration file is the connection settings that describe how to connect to your
database.

Required settings are:

• DSN the data source name. It should match the name of the System DSN in Windows
ODBC Data Sources that you configured above.

• SQLDialect set to match the database server you are using.

You may also need to set the LeftPunctuation and RightPunctuation settings if you use reserved SQL keywords
as names of identifiers or use spaces in identifier names of your views/tables/columns in the database.

The other connection settings are optional.

These and all other settings also have descriptions in the table at the end of the chapter.

Important: Some databases are case-sensitive when it comes to names of databases, tables, views, columns so
make sure you use the correct casing used in your database in the XML file.

3.5 Direct Mode for continuous/process views
Each row in a Direct Mode view is an observation.

The columns in the view represent variables:

• There must be a single column with date/time data. This column should be the primary key and cannot
hold null values. The name of this column should match the configured TimeField setting in the
configuration file. Values for this column are the time stamp for the observations.

• The date/time column must be of datetime or datetime2 data type.
• The remaining columns will be exposed through the SimApi as tags with the same names as the column

names. Values for these columns are process data.

2 This folder is hidden in Windows by default. To see it in File Explorer you configure it show hidden files. Note
that you can navigate to a hidden folder by typing an address in File Explorer’s address bar.

Installation and setup

• Write back is supported for all tags, however the correct permissions must be set in the ODBC data
source. To be able to write back missing values, nulls must be supported for the column.

The configuration in the XML file is straight forward:

 <!-- Optional: Direct mode settings: -->
 <setting key="Tables" value="MyTableName” />
 <!-- Time column in PDB/HDB views, and Direct Mode views: -->
 <setting key="TimeField" value="MyTimeColumn"/>"/>

Note: the SimApi enumerates the columns at startup only. This means that if new columns are added to a view
the SimApi must be restarted for the SimApi to expose them.

3.6 Lookup View Mode for continuous/process views
This view can be used instead of, or in addition to, Direct Mode views as described above.

The Lookup View is an indirect way of specifying which data columns in other views that should be compiled
and exposed through the SimApi. The other views are either HDB sources (historical data) or PDB sources
(current data) respectively. The PDB source is optional.

The data exposed by the Lookup View is presented by the SimApi as a node that is always called ODBCProcess:

Each row in the Lookup view defines one tag to be exposed through the SimApi and which other views to take
the data from for that tag. The Lookup view thus will contain many rows. It also specifies if a tag is writeable, i.e.,
if SIMCA-online should be able to write values back to this tag.

There can be multiple PDB sources and multiple HDB sources in use from the Lookup View. Thus, the ODBC
SimApi can aggregate data from multiple views into one node with tags that are exposed through the SimApi.

The Lookup view must contain the following columns (referred to as Fields in the configuration file):

• Name – The name of a tag (Primary Key, varchar, not null).
• PDB_Source – The name of the view that contains the current data for the tag (varchar). If this

column contains an empty value, the program will read all data from the HDB_Source.
• PDB_Field – The column name of the tag in the PDB Source view (varchar). If the

PDB_Source value is omitted, this column will not be read.
• HDB_Source – The name of the view that contains the historical data for the tag (varchar).
• HDB_Field – The column name of the tag in the HDB Source view (varchar).

Figure 1. Direct Mode table example.

Installation and setup

• Writeable – If SIMCA-online should be able to write data to this tag or not (bit).

Note that for each column, the above description also states which rows should be primary key and the data
type for each column.

The names of the columns are arbitrary since the names are specified in the configuration file.

3.6.1 PDB views and HDB views
When you use a Lookup View you also need at least one HDB view. The views for the historical data (HDB) and
the optional views for current data PDB both have the same data structure (columns).

Each row in the PDB or HDB views represents an observation with values for each tag in that PDB/HDB view as
specified in the lookup view.

The differences between PDB and HDB are:

• A PDB view contains only one row of data for the tags specified in the Lookup view. It should also have a
time stamp column for when it was last updated.

• A HDB view contains several rows of data for the tags specified in the Lookup table. Each row has a time
stamp containing the historical timestamp for a particular observation.

The PDB and HDB views should have the following columns,

• DateTime – For a PDB: The time when the table was last updated (Primary key, datetime or
datetime2, not null).
 – For an HDB: The historical time for the tag values (Primary key, datetime or
datetime2, not null).

• [Column name] – There should be one column for each tag that was specified in the Lookup table.
Contains the data for the tag in each row.

Note that for each column, the above description also states which rows should be primary key and the data
type for each column.

The names of the columns are arbitrary in the database since the names are specified in the configuration file.

The following columns are not mandatory, but are useful to add if batches are modelled with multiple phases
and there are several units in the process:

• UnitBatchID – One column per unit that contains the batch ID within a certain unit (varchar).
This tag can be used in the Batch identifier tag field for that unit in the Execution conditions page of
the configuration of this project in SIMCA-online.

Figure 2. Example of a Lookup view in the form of a database table. In the screenshot you’ll see that one PDB source and one
HDB source are used. The Name column determines the tag names that the SimApi will use, and in this case the _Field columns
use the same column names. Only one tag is writable.

Installation and setup

• PhaseID – One column per unit that holds the phase info for the unit (int, float or varchar).
This tag can be used in logical expression in the Phase execution condition field in configuration of this
project in SIMCA-online.

The maximum allowed number of tags (columns) is 255.

3.7 Batch node
A batch node contains meta-information about batches such as start time, stop time, and optionally batch
conditions. A batch node is required by SIMCA-online to analyze batch data but can be omitted for a
continuous (non-batch) project.

The name of a batch node seen from SIMCA-online or SIMCA is the original name of the view or table in the
database, in this example “BatchData”:

Each row in a batch node represents one batch.

Figure 4. PDB example.

Figure 3. HDB example.

Installation and setup

A batch view needs to have the following columns:

• BatchID – The name of the batch (Primary key, varchar, not null).
• BatchStart – The start time of the batch when it first enters the entire process (not when it

starts in a unit (part of) in the process) (datetime or datetime2, not null).
• BatchStop – The time when the whole batch is completed in the system (not in a unit), null if

not completed (datetime or datetime2).

Note that the BatchID column should be the primary key.

In addition, there can be optional columns as follows, for each batch condition variable:

• [Batch condition name] – One column for each batch condition. The column name will be
used as tag name. (float for numerical values or varchar for text such as the configuration id).

• UnitID – The name of the unit to which the batch is associated with
(varchar).

The names of the batch node and columns are arbitrary in the database since the names are specified in the
configuration file.

3.8 Batch Data Views
Each batch data view must have these three columns (additional columns will be ignored):

• BatchID – name of the batch (varchar, not null)
• Tag name – name of the batch condition variable (varchar, not null)
• Value – value of the batch condition variable (float for numerical values, or varchar for

text or float3).

The combination of BatchID and Tag name should be the primary key (unless you want to use the multiple
batch data instance feature).

Each batch data view is exposed as a node by the SimApi. The name of the node is the view name in the
database. The view name and the column names are configured in the XML configuration file using the
attributes of a single BatchDataView element like this:

3 By using a varchar text column you can store text (data for qualitative variables in a SIMCA project). However, you can also
store numerical numbers in text format, and the SimApi will convert these to numbers. This way you can have some tags that
are numerical and some that contain text.

Figure 5. Batch node example with two batch conditions (bc1 and bc2) and a UnitID column.

Installation and setup

<BatchDataView ViewName="DatabaseViewOrTableName" BatchIDColumn="BatchID" TagNameColumn="Tag name"

ValueColumn="Value" />

Note that the values used here matches the table in Figure 5.

Add multiple batch data views by adding more BatchDataView elements.

3.8.1 Synthetic batch data instance tags
To configure the optional batch data instance tags, you add the attributes NumSyntheticBatchTags and
TimeColumn to the BatchDataView element:

<BatchDataView ViewName="DatabaseViewOrTableName" BatchIDColumn="BatchID" TagNameColumn="Tag name"

ValueColumn="Value" TimeColumn="TimeColumn" NumSyntheticBatchTags="3" />

TimeColumn is the name of the time column in your database view. This column must be provided for batch
data instance tags.

Allowed value for NumSyntheticBatchTags are numerical values between 1 and 10. This controls how many
synthetic instance tags are created per real tag. For example, for the tag “tag” new tags “tag_1”, “tag_2”, …
“tag_N” will be created until N= NumSyntheticBatchTags.

3.8.2 Synthetic process batch id tags filtered on column values
To configure the optional batch id filter tags that can be used for continuous data retrieval mode, you add the
attributes FilterColumns and TimeColumn to the BatchDataView element:

<BatchDataView ViewName="DatabaseViewOrTableName" BatchIDColumn="BatchID" TagNameColumn="Tag name"

ValueColumn="Value" FilterColumns="Column1|Column2" TimeColumn="TimeColumn"/>

FilterColumns should be one or more column names in your database view. If several column names are used
separate them with the pipe character (|).

TimeColumn should be the name of the time column in your database view. This column must be provided for
batch data instance tags.

3.9 Discrete nodes
Optional discrete nodes contain discrete data measurements. Each row in a discrete node represents one
measurement for a batch and tag at a given time.

A discrete node must have the following columns:

• BatchID – The name of the batch (varchar, not null).
• TagName – The name of the tag (varchar, not null).
• Time – The time when the sample was taken (datetime or datetime2, not null).
• Value – The measurement value (float). Discrete data cannot be string data.

Note that the combination of BatchID+TagName+Time should be the primary key.

Each discrete node configured is exposed as a node by the SimApi. The name of the node is the view name in
the database, unless it is overridden. The node name, view name, lookup view, and the column names are
configured in the XML configuration file using the attributes of a DiscreteNode element like this:

<DiscreteNode NodeName="ODBCDiscrete" ViewName="Discrete" TagLookupView="DiscreteTags"

BatchIDField="BatchID" TimeField="Time" TagNameField="TagName" ValueField="Value"/>

The above example exposes a node named ODBCDiscrete by the SimApi, it enumerates the tags using the
DiscreteTags table/view. Data is read from the Discrete table/view using the configured columns.

Installation and setup

The names of the discrete node and its columns are arbitrary in the database since the names are specified in
the configuration file.

3.9.1 Discrete Tag Definition View
This optional view is used by the SimApi to enumerate the discrete tags that should be available through the
SimApi. This happens at SimApi startup.

You may want to use this view for performance optimizations when loading the SimApi or if you want to control
what tags are exposed from the SimApi. For instance if you want to expose tags that doesn’t have any
measurements yet when the SimApi is started.

Figure 6. Discrete node example with two tags sampled three times (at roughly 24 hour intervals) per batch.

Figure 7. Simple discrete tag lookup view which uses the discrete table.

Installation and setup

3.9.2 Discrete data as seen by SIMCA-online
The following is how the discrete data in Figure 6. Discrete node example with two tags sampled three times (at
roughly 24 hour intervals) per batch.Figure 6 Figure 2Error! Reference source not found.will look in SIMCA-
online when combined with the batches in Figure 5.

3.10 Some notes on SIMCA-online Write Back
Write back in SIMCA-online can be used to write data from SIMCA-online into the ODBC data source.

Writing continuous process data (from continuous configurations, the batch evolution level or from Control
Advisor) and batch data (from the batch level) are supported.

It is not recommended to write back to the same nodes that you are using to read data, because this would
attempt to add duplicate rows with the same primary keys in the database views because of the primary keys we
recommend on the date/time-column and batch ID columns (see above).

Instead create one or more Direct Mode views for continuous / evolution data, or batch nodes for batch data to
use for write-back.

The reason for this issue is that the ODBC SimApi uses SQL INSERT statements to add a new row of data for
each observation or for each batch at the batch level.

• For continuous data the time of the observation is written back together with the values from SIMCA-
online.

• For batch data the batch ID is written back together with the values from SIMCA-online.
• If missing values are written back those will be written as null, so the database must support null values

for this to work.

Since the time of an observation or batch id of a batch is written back this would violate the primary key
constraint in the databases if the same values already were present (as they would be if data were read from the
same nodes).

Other than these primary key differences, the same database schema applies to nodes for write back (see
above for more information):

Figure 8. Discrete data as seen by SIMCA-online. Note that the generated batch age tags represent the age of the batch for
each observation/sample.

Installation and setup

• A date/time column should exist for continuous nodes, and a batch id column for batch nodes.
• Add one data column for each tag that should be available for write back. Use the float datatype for

numeric data, and varchar for text data (such as when writing back the configuration id of a
configuration). For example,, if you plan to write back 20 different data vectors from SIMCA-online you
need to add 20 data columns to the database view.

• The columns must allow nulls to support writing back missing values

3.11 XML Configuration File
This table lists all settings in the XML configuration file. Use this info and the descriptions above to configure
the SimApi.

Connection specific settings Explanation

DSN Data Source Name as set up in the Windows ODBC Administrator
control panel.

SQLDialect The SQL dialect to use. One these values: standard, postgresql, db2,
mssql, mysql, oracle, access, denodo. If left blank then standard will
be used, but the default for a new XML-file is mssql.

Credentials Stored the ODBC username and password in an encrypted form. Use
the Configure button to specify the username and password.

QueryTimeout The time before a query or connection to the database will time out
and fail.

DBSchema The database schema in the database (if applicable).
A database schema is a way to logically group objects such as tables,
views, stored procedures etc. Think of a schema as a container of
objects. You can assign a user login permissions to a single schema so
that the user can only access the objects they are authorized to access.
Schemas can be created and altered in a database, and users can be
granted access to a schema. A schema can be owned by any user, and
schema ownership is transferable.

LeftPunctuation SQL dialect specific left delimiter used to separate identifiers from
other SQL commands. The default is empty which means that no left
punctuation is used. You need to specify a non-empty value if the
identifiers in the database use spaces or reserved SQL keywords. For
SQL Server or Access you use “[“, but for Oracle and other databases
using the SQL standard you should set this setting to “"” (this is
the XML escape sequence for the double quotation mark “).

RightPunctuation SQL dialect specific right delimiter used to separate identifiers from
SQL commands. For SQL Server or Access you use “]“, but for Oracle
and other databases using the SQL standard you should set this
setting to “"” as for LeftPunctuation above.

SelectStatementTerminator SQL dialect specific. Character to use to terminate select-statements.
For some dialects and versions this need to be set to an empty string
“”. Default is “;”.

DatabaseConnectionPoolSize The maximum number of concurrent connections to the database that
are allowed. The default is 10. This setting can improve performance
by allowing more than one thread to simultaneously access the
database. Learn more in chapter 1.

Installation and setup

Database specific settings

UseLocalTime Specifies if dates are stored as local time or UTC in database. Default is
“1” meaning local time is used.

Direct mode specific settings

Tables The name of the views that contains continuous/process data. Multiple
views can be specified by separating their names with a pipe character
(|). For example: Table1|Table2|Table3|View1. The TimeField name
must be identical in all views.

Lookup view specific settings

LookupTable The name of the lookup view or table.

TagNameField The column name where the tag names are given.

PDBTableField The name of a column in the lookup view. For each row this column
holds a name of a PDB view. The name of a view with PDB data. Can be
left blank, if so the most recent row of the HDB will be used instead for
current data.

PDBTagField The column name in the PDB table where data for the tag can be
found (not used if PDBTableField is omitted).

HDBTableField The name of a column in the lookup view. For each row this column
holds a name of a HDB view.

HDBTagField The name of a column in the lookup view. For each row this column
holds a name of a tag in the HDB view.

WriteableField The column name that tells if the tag is writeable or not.

Direct mode and HDB/PDB view
specific settings

TimeField The name of the date/time column in the Continuous/Process View
and the PDB- or HDB-views (or tables).

Batch node specific settings

BatchTable The name of the view or table that contains the batch data. Multiple
batch view can be specified by separating their names with a pipe
character (|). For example: BT1|BT2|BT3. The following columns must
be identical in all views.

BatchIDField The columns name of the batch ID in the batch node.

StartTimeField The column name of the start time for the batch.

StopTimeField The column name of the stop time for the batch.

BatchIDUnitField The column name of the unit ID in the batch node. This field can be
used to generate synthetic batch id process tags filtered by unit id.

Batch node with filtering support
settings

One <BatchNode> element with the following attributes that control
the settings for the synthetic filtered batch node.

Installation and setup

ViewName The name of the view or table that contains the batch data.

BatchIDColumn The column name of the batch ID of the batch.

StartTimeColumn The column name of the start time for the batch.

StopTimeColumn The column name of the stop time for the batch.

FilterColumn The name of the column that contains the filter values in the batch
node. This setting can be left empty if you don’t need the filtering
functionality.

FilterValues The values that should be used to filter batches. Multiple filter values
are separated by the pipe character (|). Leave empty if you don’t need
filtering. For example: FilterValue1| FilterValue2| FilterValue3.

This is an example of how it could look like in the configuration file:

<BatchNode ViewName="BatchNode" BatchIDColumn="BatchID"
StartTimeColumn="StartTime" StopTimeColumn="StopTime"
FilterColumn="Unit FilterValues="FilterValue1| FilterValue2" />
Multiple <BatchNode> elements are supported. Note that you can
have different names of the columns between batch nodes.

Batch data view settings Stored in one or more <BatchDataView> elements.

See 3.8 Batch Data Views.

Discrete node specific settings An <DiscreteNode> element for each discrete node with the following
attributes.

See 3.9 Discrete .

NodeName The name of the node as it will be exposed by the SimApi. If left blank
the value of the ViewName will be used.

ViewName The name of the view/table that contains the discrete data. If left blank
the node is disabled.

TagLookupView The name of the view/table that defines the discrete tags to use. If left
blank the ViewName will be analyzed at startup to enumerate all tags
there.

BatchIDField The column name of the identity of the batch that was measured.

TimeField The column name of the time of the measurement.

TagNameField The column name of the tag that was measured.

ValueField The column name of the value of the measurement.

Log file specific settings

LogFileSize The maximum allowed size of the log file before the file is truncated.

LogLevel The higher the value the more information is printed to the log file.
Maximum value is 4 and minimum value is 0. (0=Critical, 1=Error,
2=Warning, 3=Information, 4=Debug).

Support

4 Support
This SimApi is developed by Sartorius Data Analytics. For support, please visit sartorius.com/umetrics-support.

https://sartorius.com/umetrics-support

Support

 Sartorius Stedim Data Analytics AB
Östra Strandgatan 24
903 33 Umeå
Sweden

Phone: +46 90-18 48 00
www.sartorius.com

The information and figures contained in these
instructions correspond to the version date
specified below.
Sartorius reserves the right to make changes
to the technology, features, specifications and
design of the equipment without notice.
Masculine or feminine forms are used to
facilitate legibility in these instructions and
always simultaneously denote all genders.

Copyright notice:
These instructions, including all components,
are protected by copyright.
Any use beyond the limits of the copyright law
is not permitted without our approval.
This applies in particular to reprinting, transla-
tion and editing irrespective of the type of
media used.

http://www.sartorius.com/

