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ABSTRACT: A licensed pharmaceutical process is required
to be executed within the validated ranges throughout the
lifetime of product manufacturing. Changes to the process,
especially for processes involving biological products,
usually require the manufacturer to demonstrate that the
safety and efficacy of the product remains unchanged by new
or additional clinical testing. Recent changes in the regula-
tions for pharmaceutical processing allow broader ranges of
process settings to be submitted for regulatory approval, the
so-called process design space, which means that a manu-
facturer can optimize his process within the submitted
ranges after the product has entered the market, which
allows flexible processes. In this article, the applicability
of this concept of the process design space is investigated
for the cultivation process step for a vaccine against whoop-
ing cough disease. An experimental design (DoE) is applied
to investigate the ranges of critical process parameters that
still result in a product that meets specifications. The on-line
process data, including near infrared spectroscopy, are used
to build a descriptive model of the processes used in the
experimental design. Finally, the data of all processes are
integrated in a multivariate batch monitoring model that
represents the investigated process design space. This article
demonstrates how the general principles of PAT and process
design space can be applied for an undefined biological
product such as a whole cell vaccine. The approach chosen
for model development described here, allows on line
monitoring and control of cultivation batches in order to
assure in real time that a process is running within the
process design space.
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Introduction

‘‘The process design space is the multidimensional
combination and interaction of input variables (e.g.,
material attributes) and process parameters that have been
demonstrated to provide assurance of quality’’ (ICH, 2005).
This is the definition of process design space proposed by
ICH, the International Conference for the Harmonization of
Pharmaceutical Regulation. The word design indicates the
requirement for a rationale behind process development.
The design of a process that can consistently assure the yield
of products with the desired quality is one of the key
elements of the Process Analytical Technology (PAT)
initiative introduced by the American Food and Drug
Administration (FDA) in 2004 (FDA, 2004). The FDA
defines PAT as a ‘‘system for designing, analyzing and
controlling manufacturing through timely measurements of
critical quality and performance attributes of raw and in-
process materials and processes, with the goal of ensuring
final product quality.’’

The development and use of a design space is concisely
described in the Annex to the ICH Q8 Guideline on
Pharmaceutical Development (ICH, 2005). Originally, the
concept of PAT and design space applied only to chemical
� 2009 Wiley Periodicals, Inc.



Figure 1. The Design Space as a sub-space of the Investigated Space (also

known as the Knowledge Space). The Operating Space (where the process is intended

to run) can be a large or small part of the Design Space (adapted from Harms et al.,

2008). [Color figure can be seen in the online version of this article, available at

www.interscience.wiley.com.]
drugs. However, the principles behind PAT and of the
design space can be readily extended to biopharmaceuticals
as is demonstrated in this article and reported earlier by
others (Harms et al., 2008).

Prior to the introduction of the design space concept,
process validation relied initially on the execution of three
consecutive conformity batches that demonstrated process
robustness.

The design space concept allows manufacturers to move
away from fixed processes, permitting process variation after
sufficient understanding and control of the process and
knowledge of the impact of process variation on product
performance have been demonstrated. In such a case, a
change of the process settings or trajectory within an
approved design space is not considered a deviation in the
regulatory sense of the word (i.e., it does not require
regulatory approval).

One way of demonstrating the understanding of the
process and its variation is to investigate the critical
process parameters using Design of Experiments or DoE
(Montgomery, 2001). DoE investigates not only the impact
of the variation of a single, critical parameter, but also any
interactions that these critical parameters might have with
each other. For instance, a process might be running fine at
high temperature or low pH, but the combination of these
two process conditions could be unfavorable for product
quality.

The mapping of a process begins with an understanding
of the critical product quality attributes, for example, in the
case of vaccines, the antigens that induce the protective
immune response. The next step is the identification of
those process parameters that influence process perfor-
mance (e.g., yield) or the critical product quality attributes
(e.g., antigen expression). These parameters can be anything
from the quality of (complex) starting materials (such as
bovine serum or yeast extract) to the pH and temperature
during processing.

Once the critical process and product attributes are
known, the failure limits of the process can be investigated.
These are the limits of critical process parameters at which
the critical product quality attributes are so compromised
that the product will no longer meet its specifications or that
the process will fail altogether. With existing products, some
specific limits are well known to the operators that run
the process routinely, while others are generally known to be
common for a broad range of processes. For instance the
upper temperature limit of a cultivation process step can
usually not exceed 408C for most organisms, because cellular
processes are radically changed or even disrupted at high
temperatures. The failure limits or critical limits for any
remaining parameters can be investigated with a series of
simple experiments, such as we reported for dissolved
oxygen concentration (Streefland et al., 2008).

The combination of the failure limits does not, by itself,
constitute a design space since it provides no means for
predictions outside of the actually tested settings. Rather, the
knowledge gained from the evaluation of failure limits can
be used to devise a DoE experimental matrix to determine
the design space. The results from a DoE experimental
matrix can be modeled so that predictions can be made for a
continuous range of settings and their interactions, based on
a discrete number of tested settings. Test values for the
critical process parameters that are known to yield product
of specified quality within the process failure limits are
selected for the matrix. The tested ranges of the critical
parameters then provide the boundaries of a multidimen-
sional space having the number of its dimensions equal to
the number of critical parameters in the design.

Biopharmaceutical products are typically produced in a
batch-wise manner, and this gives rise to three-way data
arrays: batch number versus processing time versus process
parameters (see also Fig. 2). Chemometric methods such as
principal component analysis (PCA) and partial least
squares (PLS) calibration models (Wold et al., 2008) can
be used to model the three-way batch data in order to
provide tools for understanding, fault detection, control,
and prediction. The resulting dynamic control models can
be used to describe a (partial) design space, taking into
account the evolution of parameters during processing.

In this article, we investigate the design space for the
cultivation of Bordetella pertussis bacteria. This is the key
process step in the manufacturing of a whole cell vaccine
against whooping cough disease. A whole cell vaccine means
that the whole bacterial cell is the actual product, in contrast
to, for instance, sub unit vaccines in which only purified
membrane proteins are used. The downstream processing of
such a vaccine involves only inactivation and concentration
of the cells without a purification step. Thus, the most
critical product quality characteristics are already defined at
the end of the cultivation process.

In order to consistently ensure a predefined quality at the
end of the manufacturing process (ICH definition of the scope
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of PAT), an additional signal may be needed that can be
related to process performance or product quality. Accord-
ing to the FDA’s PAT guidance, ‘‘Measurements collected
from these process analyzers need not be absolute values of
the attribute of interest.’’ In this study, near infrared (NIR)
spectroscopy is investigated as a PAT tool, that is, an online
measurement of critical quality and performance attributes
(FDA/ICH PAT definition), to monitor the cultivation of
B. pertussis bacteria. NIR data are used to indicate specific
attributes of interest (such as biomass concentration) and as
a ‘‘fingerprint’’ that gives qualitative information on the
status and trajectory of the process. All data gathered
online—NIR as well as conventional cultivation process
data (i.e., pH, temperature, and gasflow controller out-
puts)—are combined in a single database using PAT
compliant software. This database contains all data used to
construct the model describing the multivariate process
design space.

The design, experimentation and multivariate modeling
required to define the design space for the cultivation of
B. pertussis are described. The resulting process model
integrates bioreactor control data with online NIR
measurements and can be used for on–line, real time
modeling of the cultivation process. This provides real time
assurance of process performance and an indication of
product quality during processing. Ultimately, the system
will be capable of real time release of the cultivation product
for further processing.

The main goal of this article is to investigate the
applicability of the principles of design space investigation
for a complex biopharmaceutical cultivation process.
We investigate both the experimental work involved, the
analytical (PAT) tools used and the data processing and
modeling necessary in order to devise a model that describes
the process design space. It is a first attempt to apply the
principals of PAT and process design space for an undefined
biopharmaceutical product, namely a whole cell vaccine.
While the manufacturing process is relatively simple, the
product itself can be regarded as the ‘‘worst case’’ in terms of
how defined and how well characterized the product is. The
ability to apply PAT principles on this product bodes well
Table I. The DoE matrix for the 12 batch runs used to determine the proce

Experiment number Run order DO (%) pH Temperat

1 1 10 6.8 3

2 12 60 6.8 3

3 2 60 6.8 3

4 3 30 7.2 3

5 4 30 7.2 3

6B 10 10 7.8 3

6A 13 10 7.8 3

7 5 60 7.8 3

8 6 30 7.2 3

9 7 10 7.8 3

10 8 60 7.8 3

11 11 30 7.2 3

12 9 10 6.8 3

494 Biotechnology and Bioengineering, Vol. 104, No. 3, October 15, 2009
for the implementation of PAT on other, more defined
(bio)pharmaceutical products.
Materials and Methods

Experimental Design

An experimental design was executed and data from the
design used to mathematically model the effects of the
process parameters on product quality. A robustness design
in which the parameter values chosen were at a safe margin
from known or expected failure limits was employed. The
design was a Plackett Burman design in 8 runs to which two
times two replicate center points were added (two for each of
the two reactors). The experimental matrix, having 12 runs,
is shown in Table I. Experiment 6 was done twice, owing to a
data collection problem, once in Reactor A and once in
Reactor B.

The process parameters investigated were: the dissolved
oxygen (DO), the pH, the temperature, the density of
bacteria at the end of the pre-culture phase in the shake-flask
(Preculture density), the actual density of bacteria at the
start of the bioreactor run (Inoculation density), and which
of the two identical bioreactor systems, A or B, was used in
the experiment.
Bioreactor Cultivations

Cultivation Conditions

All cultivations were carried out in a fully instrumented 7 L
in situ, sterilizable bench-top bioreactor with a six-bladed
Rushton turbine (Applikon, Schiedam, The Netherlands).
The bioreactor was filled with 4 L of THIJS medium (Thalen
et al., 1999) and raised to the set point temperature and
a 100% dissolved oxygen (DO) condition. It was then
inoculated with preculture from a shake-flask at an optical
density at 590 nm (OD590) of 0.5, 1.0, or 1.5. The volume of
preculture used to inoculate the bioreactors was adjusted to
ss design space.

ure (8C) Preculture density Inoculation density Reactor

7 0.5 0.1 A

3 0.5 0.025 B

7 1.5 0.025 A

5 1 0.05 B

5 1 0.05 A

7 0.5 0.025 B

7 0.5 0.025 A

3 0.5 0.1 A

5 1 0.05 B

3 1.5 0.025 A

7 1.5 0.1 B

5 1 0.05 A

3 1.5 0.1 B



yield the desired starting density. Temperature, DO, pH and
stirrer speed were controlled at the different values shown in
Table I. A low-drift polarographic electrode (Applikon) was
used to measure the dissolved oxygen concentration in the
liquid (DO). pH and temperature were measured using a
glass pH electrode (Mettler Toledo, Tiel, The Netherlands)
and a Pt100 temperature sensor (Applikon), respectively. All
sensors were connected to the bioreactor control system
(Applikon), which was operated using PCS7-based bio-
reactor control software (Siemens, Zwijndrecht, Belgium).
DO was controlled with increments in stirrer speed up to
650 rpm after which it was controlled by increasing the
fraction of oxygen in the headspace. The fraction of air, O2,
and N2 were also registered in the control system. Total gas
flow was kept constant at 1.0 L/min.
Nutrient Concentration Analysis

Samples were taken at regular intervals and OD590 and
nutrient concentrations were measured. Samples were sterile
filtered (0.22mm) and supernatants were stored at �208C
for further nutrient analysis. Lactate and glutamate
concentrations were determined by 1H-nuclear magnetic
resonance (NMR) spectroscopy using a JEOL JNM ECP
400 spectrometer operating at 400MHz (JEOL, Tokyo,
Japan) and equipped with a JEOL Stacman autosampler for
16 samples. Supernatants were analyzed by adding 0.1 mL
of D2O containing 3-(trimethylsilyl)[D4]proprionic acid
sodium salt (TSP, 0.167 mM) to a 0.9 mL sample. The water
signal was suppressed by a standard pulse experiment using
presaturation. The spectra were referenced using the TSP
signal at 0 ppm. Lactate and glutamate concentrations were
quantified by integration of the relevant signals. NMR was
also used to check samples for any waste metabolites.
Table II. DoE experiments and their corresponding product quality

scores.

Experiment number Product quality score
Data Collection and Handling

All on line data necessary to build the process model were
collected using the SIPAT software. Every 2 min this
software collected the data from the cultivation system
and the NIR system (see below) and stored it in a central
database. When two bioreactor systems were running
simultaneously, the SIPAT software collected the data from
each system sequentially every minute so that each system
was still sampled every 2 min. The SIPAT database was later
used to build the process model.
01 10.36

02 10.00

03 9.95

04 8.89

05 9.68

06B 9.74

06A 8.57

07 9.67

08 10.07

09 9.51

10 9.91

11 10.58

12 10.53
NIR Spectroscopy Measurements

An on-line NIR transmission probe (Solvias AG, Basel,
Switzerland) with a fixed path length of 5 mm, was
implemented in both bioreactor vessels. The probe was
immersed in the liquid with the measurement slit at the
height of the stirrer, pointing away from the stirrer.
Measurements were made every 2 min on both probes using
a Bruker Matrix F NIR source (Bruker Optics, Ettlingen,
Germany). Spectra were taken at a resolution of 4 cm�1
between 12,000 and 4,000 cm�1. Each spectrum was an
average of 32 scans.
Additional Samples for PLS Calibration of
Biomass Density

Some additional samples were necessary to build a suitable
PLS calibration model for biomass density. The samples
were prepared by cultivating B. pertussis in a glass shake-
flask according to the standard procedure. At the end of the
cultivation (OD¼ 1.3–1.5), half of the shake-flask was
centrifuged and sterile filtered to yield cell-free supernatant.
Suspension and cell-free supernatant were mixed to create
samples with optical densities that match, the start, half-
time and end of the cultivation, but that have nutrient
concentrations that do not match these cultivation stages.
In this way, the correlation between optical density and
nutrient concentration is disconnected, in order to see if
these parameters individually correlate to the NIR signal and
that they not merely have the same process trend Table II.

Lactate and glutamate stock solutions were prepared at
4.44 and 2.22 M, respectively. These solution were mixed
according to a full factorial design to produce concentra-
tions typical for the start, halftime or end of a standard
cultivation. Half-time samples were prepared by mixing cell-
free supernatant with cell suspension at a dilution of 1:1. The
cell-free supernatant was used as a surrogate for the low-OD
samples.

In total, 27 were samples were prepared and, after
thorough mixing, were quickly measured using an NIR
cuvette bench (Bruker Optics, Ettlingen, Germany). The
settings were identical to those used for the transmission
probe inside the bioreactor.
Microarray Analysis

RNA Isolation

Samples for microarray analysis were taken at the end of
each cultivation. For fixation of the RNA expression profile,
Streefland et al.: Design Space for a Bacterial Vaccine 495
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one volume of bacterial culture was mixed with two volumes
of RNase retarding solution (Kasahara et al., 2006; Mutter
et al., 2004; Ramalho et al., 2004). For each microarray
sample 2.5 mL cultivation at OD590 ¼ 1.0 was used. Samples
at other optical densities were adjusted accordingly, so that
an equal amount of cells was used for each sample. The
samples were concentrated by centrifugation and treated for
3 min with Tris–EDTA buffer, containing 0.5 mg/mL
lysozyme (Sigma–Aldrich, Zwijndrecht, The Netherlands).
Total RNA was extracted with the SV total RNA isolation
system (Promega Benelux, Leiden, The Netherlands)
according to the manufacturer’s protocol. Nucleic acid
concentration was adjusted by precipitation. UV spectral
analysis was used to determine final nucleic acid concentra-
tion and purity and RNA integrity was confirmed with the
Bioanalyzer RNA6000 Nano assay (Agilent Technologies,
Amstelveen, The Netherlands), according to the manufac-
turer’s protocol.
cDNA Labeling and Hybridization Reactions

Total RNA from all experimental samples was reverse
transcribed to cDNA and labeled with Cy3/Cy5 dyes using
the Chipshot Indirect Labeling Kit (Promega Benelux)
according to manufacturer’s protocol, with one deviation:
2mL random nonamer primer and no oligo-dT primer was
used per reaction to reverse transcribe the total RNA,
because prokaryote mRNA does not have poly-A tails.
Experimental samples (Cy5) were pooled with a common
reference sample (Cy3) having equal amounts of RNA from
all experimental samples in the experiment. Volumes of the
combined cDNA samples were adjusted to 25mL and an
equal amount of hybridization buffer was added, to a final
concentration of 25% formamide, 5� SSC and 0.1% SDS.
Samples were applied to the microarray slides and placed in
a hybridization chamber (GeneMachines, San Carlos, CA)
for 16–20 h at 428C in the dark.

The microarrays were scanned with a ScanArray
Express microarray scanner (Perkin Elmer, Groningen,
Figure 2. Overview of available data blocks. [Color figure can be seen in
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The Netherlands) and median fluorescence intensities were
quantified for each spot using ArrayVision software
(Imaging Research, Roosendaal, The Netherlands).
Processing of the Expression Data

The expression data were natural-log transformed, quantile
normalized, corrected for the common reference dye signal
and the values of replicate spots were averaged. These data
processing steps were carried out using the free statistical
software R, running an in-house developed script.

A product quality score was calculated from the gene
expression data as described earlier (Van de Waterbeemd
et al., 2009). To calculate the product quality score, only
genes from the virulence core regulon (Cummings et al., 2006;
Streefland et al., 2007) were considered, since these are the
genes that are considered to be critical for the function of the
vaccine. Based on earlier work, a product quality score of 8
or higher, can be considered to represent good quality (Van
de Waterbeemd et al., 2009).
Data Analysis and Modeling

The data available in this study can be categorized as follows
(Fig. 2):
� X
the
DoE: the setup parameters from the DoE (T, pH, DO,
preculture density, inoculation density and reactor).
� X
proc: the time varying process variables measured
throughout the batch evolution (pH, DO, T, flow of
air, O2, and N2, stirrer speed).
� X
NIR: the on-line NIR data measured throughout the
batch evolution.
� Y
procQ: the process variables related to process evolution
measured at-line by taking out samples during the
cultivation (OD, glutamate and lactate).
� Y
prodQ: the final product quality variables measured after
the completion of the batch, that is, the microarray
online version of this article, available at www.interscience.wiley.com.]



expression data (product quality score, see Microarray
Analysis Section).

Due to the large number of distinct data sets available for
the study, the analysis was split up into four sub-steps.
Step 1: Traditional Design Space Analysis

The gene expression data (YprodQ) were transformed into a
product quality score and the relationship between the
design setup parameters (XDoE, Table I) and the product
quality score was modeled to detect significant effects. The
approach involved a traditional DoE analysis in which the
output of the experiments was associated with the input
settings. Multiple linear regression (MLR) was used to
model the relationship between the process parameters and
the product quality using the MODDE (Umetrics
AB, Malmö, Sweden) DoE software package. A robust
design space should result in a non-significant model in
which no significant relationship exists between product
quality and variation in the process setting within the tested
range. In that case the process is stable within the design
space.
Step 2: Prediction of Process Variables From NIR Data

The process evolution variables (YprocQ) OD590, lactate and
glutamate are a measure of the status of the cultivation and
can be used to assess changes in specific growth rate or
metabolism. However, these parameters are only measured
at distinct sample points during cultivation. It is of interest
to have these variables available on line for more accurate
monitoring of the status of the cultivation. NIR data were
used in an attempt to predict these process evolution
variables. NIR data values were used as an X data matrix with
the process evolution variables as the Y data matrix. A PLS
regression model was fitted to the two datasets. The NIR
data were centered before fitting the PLS model, while the
process evolution data were centered and scaled to unit
variance.

Initial modeling revealed a high degree of correlation
between the three process evolution variables, OD590, lactate
and glutamate. Therefore, a prediction model based only on
the samples taken from the cultivations was not reliable.
Additional samples having the three evolution variables
uncorrelated with each other were therefore prepared as
described in Table II earlier. These samples were also
subjected to NIR spectroscopy analysis and the data were
added to that from the cultivations to obtain a reliable
prediction model.
Step 3: PCA Fingerprints From NIR Data

The NIR measurement results in more than 4,000 variables,
which are not mathematically independent and which do
not all carry unique information. To use NIR data as a
‘‘fingerprint’’ of the status of the process, the spectra are
compressed into a small number of independent Principal
Components that summarize the variation in the large
number of initial variables. The computational time needed
for the calculation was reduced by using one spectrum per
hour for the calculation of the PCA model for each batch.
Finally, all spectra (taken every 2 min) were compressed
using this model.

The ‘‘fingerprint’’ derived from the NIR spectra does
not necessarily represent specific physical or chemical
characteristics of the samples, but may contain more
abstract characteristics. It is assumed, however, that the NIR
fingerprints are similar for all batches, thus that it can be
used as a non-specific variable for the monitoring of
batch evolution, allowing non-biased batch-to-batch com-
parisons.
Step 4: Building the Process Control Model

The process data registered during batch evolution (denoted
Xproc in Fig. 2) were modeled together with the OD590

predicted from NIR (Step 2) and the NIR fingerprint variables
(Step 3). Together they constitute a three-dimensional data
matrix of batches versus variables (process variables,
predicted OD590 data, and NIR fingerprint variables) versus
process time.

The evolution was split up into two phases for each batch.
The first phase was represented by the part of the cultivation
in which Dissolved Oxygen concentration (DO) was
controlled by increments in stirrer speed and the second
in which DO was controlled by increasing the fraction of O2

in the headspace. This was done to allow for a different
correlation structure in the process variables before and after
the change in DO control strategy.

The data were modeled as described in Wold et al. (2008)
using the modeling setup denoted Observation-Wise
Unfolding with subsequent Batch-Wise Unfolding of the
scores (OWU-BWU).
Software

ArrayVision 8.0 (GE Healthcare, Uppsala, Sweden) was used
to quantify microarray fluorescence intensities.

R (WU Wien, Austria) was used for statistical analysis of
gene expression data.

MODDE (Umetrics, Umeå, Sweden) version 8 was used
for setting up the design and for the traditional DoE analysis.

SIMCA-Pþ version 11.5 (Umetrics, Umeå, Sweden) was
used for all NIR data analysis as well as for building the
process control model.

The SIPAT software (Siemens, Nynove, Belgium) was
used for collecting process and NIR data during the
cultivations and served as the database for extracting data for
use in the NIR and process models.
Streefland et al.: Design Space for a Bacterial Vaccine 497
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Results and Discussion

Traditional Design Space Analysis

The product quality at the end of each of the 13 runs was
determined by calculating the product quality score for each
batch (Van de Waterbeemd et al., 2009) from the gene
expression data (Table II). Prior experimentation showed
that good quality is represented by a score above 8
(Van de Waterbeemd et al., 2009), and thus the scores in
Table II (all higher than 8.5) should represent good product
quality.

The quality scores are used instead of the actual animal
(Kendrick) tests for product quality that are normally
required by the authorities for whooping cough vaccine.
This test involves an intra-cranial challenge of mice
previously vaccinated with a human dose of vaccine with
live B. pertussis bacteria (Irwin and Standfast, 1957;
Kendrick et al., 1947). This test is not only highly variable
and very cruel to the animals, but also costly and labor
intensive (Xing et al., 2001). The product quality scores are
therefore better suited for building this preliminary process
model.

Using the DoE setup parameters as input (X) variables
and the product quality scores as output (Y) variables, a
traditional DoE analysis was done using MODDE software.
No significant model could be fitted (best fit: R2¼ 0.38;
Q2¼�0.2), indicating that, within the ranges of the
variables of the DoE setup, variation in the value of the
input parameters had no effect on the product quality. This
indicates that, within the tested ranges, the process is robust.
The ranges tested in this study can therefore qualify as a
design space as intended in the ICH Q8 Guideline (ICH,
Figure 3. Raw data plot of NIR spectra of the samples taken out during cultiva

www.interscience.wiley.com.]
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2005). The data collected during these experiments can be
used to fit a model that describes the process and can later be
used as an on-line check of whether a new process is running
within the design space.
Prediction of Process Variables From NIR Data

A raw data plot of the NIR data is shown in Figure 3. The
plot shows clear offset differences between the spectra,
probably due to difference in optical density of the samples.
No attempt was made to remove this variation as this
parameter is probably the main correlate for optical density
in the NIR signal, which is one of the process evolution
variables to be predicted from the NIR spectra.

The very strong signals from water in the spectral regions
7,200–6,500 and 5,400–4,000 cm�1 saturated the detector
and, therefore, models built on the NIR spectra exclude
these regions. The main benefit of this method is that the
signal outside the ‘‘water region’’ is much stronger which
increases the sensitivity of the measurement.

A PLS model was built from the NIR spectra (X) and all
three processes evolution variables: OD590, lactate and
glutamate (Y). This model provided very good results with a
cross-validated explained variance ðQ2

YÞ of 81–97% for the
three parameters. However, the three parameters were
highly correlated, because OD is initially low in a cultivation,
while the concentration of nutrients is high. As the
cultivation proceeds, the OD increases while concentration
of nutrients decrease at the same rate. Thus predictions from
this model cannot be trusted, because the model is unable to
predict samples correctly where this relationship between
the three variables is not present. Artificial samples were
tion. [Color figure can be seen in the online version of this article, available at



prepared in order to break up the correlation between the
three process evolution variables. PLS models built only on
these samples showed that OD could be reasonably
predicted, while no significant components were found
for the prediction models for lactate and glutamate.

To incorporate any difference between the spectra for the
artificial samples prepared from a shake-flask cultivation
and the samples taken directly from the bioreactor
cultivations, a PLS model for predicting OD590 that was
based on both sets of samples was built (total samples
number: 85 (58 original cultivation samples and 27 addi-
tional samples)). The model showed very good predictive
ability (Q2

Y was 96%) and no difference between prediction
error of the artificial samples and the original cultivation
samples was seen (Fig. 4). The predicted values of OD590

were used in the subsequent analysis of batch evolution
together with the process variables. This prediction model,
based on the NIR signal, can be executed during cultivation
of future batches, allowing a growth curve to be plotted in
real time without the need for excessive sampling. However,
the prediction of the higher values OD590 still show a large
prediction error, which means that more samples from more
batches need to be added to the model in order to increase its
reliability before it can replace manual sampling completely.
PCA Fingerprints From NIR Data

NIR data can also serve as a fingerprint of the status of the
process. For this purpose, a Principal Component Analysis
Figure 4. Plot showing values of OD590 predicted during cross-validation (ordinate) v

original cultivation, while triangles represent artificial samples.
(PCA) based model was created from the NIR cultivations
data. To reduce calculation time, one spectrum per hour was
used to construct the model (incorporating the entire
biological evolution of the batches), resulting in a total of
218 NIR spectra. The regions containing the water signals
were excluded as described above.

A PCA model with five components was created that
explained 99.9% of the variation in the data. All NIR spectra
(acquired every 2 min throughout the cultivations) were
then compressed into these five components using this
model. The five components, used as five fingerprint
variables (NIR_fp1 to NIR_fp5), together with the process
variables are used in the subsequent analysis of batch
evolution.
Building the Process Control Model

Integrity of Process Data

Due to an overnight data collection error, the middle part of
the process and NIR data for Batches 3 and 6B were lost
(�30–40% of total batch data), which means these data
could not be used in the model. The data from samples taken
from these batches were used, however. Process and NIR
data for Batches 2, 8, 10, 11, and 12 were not sampled
consistently every 2 min throughout batch evolution due to
a wrong setting of the NIR sampling method. The interval
for these batches varied generally between 1 and 5 min,
which is adequate for batch modeling, so the batches could
ersus measured/prepared values (abscissa) of OD590. Circles represent samples from
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be used. The available data were sufficient to build a robust
process model. In order to allow all datasets to be processed
in a similar way, any gaps in the datasets were filled using
averaged values in such a way that they did not influence the
model.
Modeling of Dynamic Evolution

Modeling of these kind of data can be performed according
to several approaches. The most common approaches to
model three-way data arrays are those by Nomikos and
MacGregor (1994) and Wold et al. (1998, 2008). A
discussion of approaches for batch data modeling can be
found in Kourti (2006) or Lopes et al. (2004). We have also
discussed the approach for this specific dataset earlier (Van
Sprang et al. 2007). The approach by Wold et al. (1998,
2008) is most suitable for this specific dataset, because
of the nature of the dataset and the limited number
of batches available. The process variables together with
predicted OD590 and NIR fingerprint variables were
modeled using PLS with time as the Y variable. Prior to
modeling, all variables were investigated individually and
trimmed to remove unrepresentative values (e.g., spikes
caused by air bubbles in the NIR measurement slit). The
resulting PLS model based on all on-line signals from the
bioreactor control system, the predicted biomass and
the NIR fingerprint variables, describes the evolution of
the cultivation batches as a result of the settings chosen in
the DoE matrix (Table I). This is called a dynamic evolution
model.

This model consists of two phases, each containing four
components which explain >99% of process variance,
as shown in Figures 5 and 6. The line graphs show the
evolution of the loading plots for each batch over time,
which the bars (loading plot) indicate the contribution
of each parameter to the observed variance. A detailed
interpretation of these components is provided in Appen-
dix, while a short summary is given below. Note that it is not
critical that all components be fully understood for a
monitoring model. When, however, this model is used for
the next level of modeling, the multivariate batch moni-
toring model, it is important that it encompasses ‘‘normal’’
batch evolution, in other words that it describes the process
design space completely. It should thus distinguish normal
or good batches from deviating batches. Because of the
limited number of batches used in the experimental design,
this will initially give ambiguous results in parts of the design
space that are not fully covered in the experimentation.
Data from new cultivations (for instance from regular
manufacturing) should be added to the process model to
make it more reliable over time. The model may also be
challenged with experimental faulty batches for validation
purposes.

The batch evolution was split into two phases coinciding
with a switch in the oxygen control strategy (Figs. 5 and 6,
respectively). At the start of a batch, before inoculation,
dissolved oxygen (DO) is maintained at set-point using air
500 Biotechnology and Bioengineering, Vol. 104, No. 3, October 15, 2009
and N2 with a total flow of 1 L/min. After inoculation, while
maintaining a total flow of 1 L/min oxygen, consumption
rises and the fraction of nitrogen decreases to zero.
Simultaneously, the stirrer speed is gradually increased to
a maximal set-point value. When both air and stirrer speed
have reached their maximum set-points, the controller
switches to a new strategy in which the fraction of oxygen
in the gas mixture is increased by mixing pure O2 into
the airflow, while still maintaining total gas flow at 1 L/min.
This relationship is seen in the first component for the
first phase, where PredictedOD, air, stirring, and
NIR_fp1 are increasing with batch evolution while N2 is
decreasing.

The second phase of the process (Fig. 6) begins when the
stirrer speed is no longer increasing and the pure oxygen
valve is opened for the first time. This change in control
strategy is clearly seen in the first component for the second
phase, where PredictedOD and NIR_fp1 continue to
increase, while air decreases and O2 is increases. Further,
more detailed, explanation of the model components is
given in Appendix.
Multivariate Batch Monitoring Model

For on-line monitoring whether any given process is
running inside the process design space, a multivariate batch
monitoring model is required. The batch monitoring model
was constructed based on the dynamic evolution model as
described in Wold et al. (2008). This model gives a total
overview of the difference between the batches. To illustrate
this, a PCA model with two components was built on the
scores from the dynamic evolution model. The scores plot of
this model is shown in Figure 7.

This plot is a 2D graphical representation of the process
design space as it is described by the DoE batches. All batches
are condensed into one point and the outer circle represents
the 95% confidence interval of the (design) space defined by
these points. The numbers correspond with the batch
numbers shown in Table I. Batches 3 and 6B are not
represented because of insufficient NIR and process data, as
explained earlier.

All relevant process data, including the predicted OD
and the NIR fingerprint variables, are condensed in the
multivariate batch monitoring model. Figure 7 shows that
the design applied can be seen to have caused some variation
in the process evolution. The batches are similar—none
fall outside of the Hotellings T2 ellipse that represents a
95% confidence interval. The design is clearly reflected in the
plot, as the center-points of the design (those batches run
with intermediate values of all six investigated parameters),
Batches 4, 5, 8, and 11, are close together and near the center
of the graph. Furthermore a separation in temperature can
be observed, with at the bottom and right part the cultures at
338C (squares), in the middle the cultures run at 358C
(circles) and at the left and top part the cultures run at 378C.
Also a separation in the rector used can be seen with the runs



Figure 5. Scores (left) and loadings (right) of Phase 1 of components 1–4 (top to bottom) of the dynamic evolution model. The outer red lines in the line graphs indicate a 95%

confidence interval and the green line the average. The other lines each represent the evolution of the score of a cultivation batch over time. The loadings (right) are represented as

contribution plot in which the contribution of each individual parameter to the variance is shown. Error bars indicate the standard deviation over time. [Color figure can be seen in

the online version of this article, available at www.interscience.wiley.com.]
in reactor A (open symbols) being higher in the plot than the
runs in Reactor B (closed symbols).

Because all batches were concluded to be of good quality,
this plot—including the ellipse at the 95% confidence
interval—can be viewed as a design space. However, the
present dataset is insufficient to allow release decisions based
on this model, because the present model does not fully
describe the process design space. A batch with a combination
of variables that is not tested in the DoE setup may fall outside
the current design space, but still be of good quality or, on the
other hand, may fall inside the design space and be of
insufficient quality. As mentioned above, data from new
batches must be added to the model to increase its accuracy,
especially near the edges of the process design space.
Conclusions

This report demonstrates how the general principles of PAT
and design space can be applied to an undefined
biopharmaceutical. The complexity of a bacterial cultivation
process first requires sound scientific investigation of the
critical process and product attributes and the analyses
needed to measure these attributes. Mandatory QC assays
may not provide the exact scientific information necessary
to appraise product quality. A ‘‘pass’’ or ‘‘fail’’ result is
usually insufficient in this case. The quality of the bacterial
suspension at the end of cultivation was appraised using a
product quality score derived from DNA microarray
analysis. This provides a quantitative measure of the
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Figure 6. Scores (left) and Loadings (right) of Phase 2 of components 1–4 (top to bottom) of the dynamic evolution model. The outer red lines in the line graphs indicate a

95% confidence interval and the green line the average. The other lines each represent the evolution of the score of a cultivation batch over time. The loadings (right) are

represented as contribution plot in which the contribution of each individual parameter to the variance is shown. Error bars indicate the standard deviation over time. [Color figure

can be seen in the online version of this article, available at www.interscience.wiley.com.]
performance of the run. The already available on line data
were supplemented with NIR spectroscopy and samples
were taken frequently to determine nutrient and biomass
concentrations. This whole set of data contains all relevant
information for this process step.

This report shows how this complex data set can be
integrated into a single process model that describes the
process design space for the cultivation of B. pertussis
bacteria for the production of a whole cell vaccine against
whooping cough disease. The steps that were undertaken for
the development of this model are described; from
experimental design and analytical (PAT) methodology to
chemometrics and mathematics. The resulting model can be
used to monitor process evolution on-line and make
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predictions on the expected product quality at the end of
cultivation.

Future application of this approach to all manufacturing
process steps will allow the development of an overall
manufacturing model incorporating the input and output of
each process step, thus enabling flexible manufacturing at
optimal settings. When this is validated, any process that has
been executed within the process design space is assured to
be of the specified quality. This means that this process
model can make the release decision of the product during
processing. Of course, to be allowed to replace mandatory
QC testing, the model must be confirmed through extensive
testing using actual process data. The model presented in
this article may be considered a starting point for this



Figure 7. Overview of the multivariate batch monitoring model. Batches marked with triangles were run at 378C, with circles at 358C and with squares at 338C. Open symbols

represent the batches run in Reactor A and closed symbols batches run in Reactor B. The numbers denote the batch numbers as denoted in Table I.
procedure. It should be run in parallel to the normal
testing procedures and, when sufficient data is added to the
model and regular tests have confirmed its reliability
and comparability, it can eventually replace these tests.
The resulting system is then capable of . . . analyzing, and
controlling manufacturing through timely measurements (i.e.,
during processing) of critical quality and performance
attributes of raw and in-process materials and processes with
the goal of ensuring final product quality, fulfilling the PAT
definition.

Appendix: Interpretation of the Model
Components

Phase 1

The first component represents a feature that increases
throughout the batch evolution. It consists of a correlation
between main variables air, stirring, PredictedOD and the
first NIR fingerprint (NIR_fp1), which is mainly the offset
that also explains OD. These all increase while N2 is
decreasing. This is a logical correlation since they all follow
general trends caused by bacterial growth during batch
cultivation. Increases in oxygen consumption cause the
fraction air to increase over the fraction pure N2, and
combine with an increasing stirrer speed and of course
increased optical density.

The second component consists mainly of a correlation
between temperature and NIR_fp4. This is simply a
confirmation that temperature is reflected in the NIR
spectra.

The third component shows air, DO, and O2, together
with NIR_fp4 decreasing, while N2, pH, Temperature and
NIR_fp3 increase. This might just be an effect caused by the
different DO setpoints in combination with temperatures in
each batch. Although dissolved oxygen (DO) is stable
throughout each batch, between batches there are differ-
ences between the N2/air ratios needed to maintain the
setpoint. When the setpoint of DO is low, more nitrogen
and less air is needed. This component also picks up an
increase in pH that occurs mainly at the end of Phase 1.
These phenomena may be caused by the fact that the oxygen
transport constant between liquid and gas (kLa) is
dependent on temperature. At lower temperatures kLa is
lower, which means a higher oxygen concentration in the gas
phase is needed to maintain the setpoint. Also the solubility
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of CO2 (as H2CO3) is increased which results in a reduction
in pH.

The fourth component shows that O2 is negatively
correlated with primarily NIR_fp2. Close examination of the
scores plot shows that this component reflects a difference
between the reactors–batches run in Reactor A have low
score values and batches run in Reactor B have high values.
The variables NIR_fp2 and NIR_fp3 reflect some reactor
difference (having higher values for Reactor A) and since the
variable O2 has a small variation between reactors—varying
between 0 and 0.0005 for Reactor A but between 0 and
0.0015 for Reactor B, this component picks up a small
negative correlation between the variable O2 and the two
NIR fingerprint variables.

Phase 2

The first component, again, exhibits a rising trend for all
batches. It consists mainly of a correlation between
PredictedOD and increased NIR_fp1, while air decreases
and O2 increases. This indicates an increased oxygen fraction
in the gas flow due to the mixing of pure oxygen while
reducing the air to maintain a constant gas flow. This
phenomenon is accompanied by a strong increase in the
optical density and it is reflected in the NIR_fp1.

The second component shows a diverging pattern with
some batches increasing while some decrease slightly. The
correlation between the factors is relatively weak, except for
the NIR fingerprints, where NIR_fp1 and NIR_fp2 strongly
increase and NIR_fp3 decreases. For the other factors, air,
and N2 and PredictedOD increase while all others (O2, pH,
stirrer, temperature) decrease. This complex interaction
cannot be readily explained but may be the result of several
effects due to both bacterial growth and the kLa pheno-
menon described above.

The third component shows a rather noisy pattern, which
is reflected by the larger error bars in the loading plot.
Predominantly, an increase in DO and stirrer is accom-
panied by a decrease in N2, pH and temperature. The strong
effect of pH is hard to explain, but the others are parameters
that have been correlated earlier. This seems to be another
difficult to explain, complex interaction but it may be due to
the influence of several effects arising from the different set
points for all experiments in the design.

The fourth component shows a slightly less noisy pattern
than the third, but it is still largely unstructured. It mainly
involves a correlation between pH and temperature. This
can be explained by the aforementioned phenomenon
that CO2 (which is produced by the bacteria in the
fermentor) dissolves better at low temperatures and, since it
dissolves as a weak acid (H2CO3), reducing the pH.
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