SARTURIUS

Success Story

Improving Productivity and Purity in ADC Polishing With Sartobind® Q Membranes in Rapid Cycling Mode

Antibody-drug conjugates (ADCs) are a rapidly growing therapeutic class in oncology, but their purification presents unique challenges. Traditional resin-based chromatography is limited by low productivity, high buffer consumption, and insufficient aggregate clearance—all in the context of handling highly potent cytotoxic payloads. In this study, Sartobind® membrane adsorbers were evaluated as a replacement for mixed-mode resins in ADC polishing. The results demonstrated significant process intensification, higher product quality, and notable cost savings. Learn more in our BPI article.¹

Challenge

- Column handling and capital investment for packing equipment and facility footprint
- Long process times resulting in low productivity
- ROI dependent on high resin cycle numbers, requiring end-of-life use

Provided Solution

- Implementing rapid cycling chromatography (RCC) to support full utilization of consumables within a single batch
- Replacing resins with flexible Sartobind® Q membranes, reducing footprint, process time, and cost
- $\blacksquare \ \, \text{Leveraging single-use design to reduce validation burden and minimize operator risk}$

Case Profile

Company Type: Medium Biopharma, CDMO

Related Molecule: Proteins, mAbs, biosimilars, bioconjugates, vaccines, mRNA (low pressure steps), plasmid

Related Process Steps: Polishing

Packed bed column chromatography:

- 31.8 L packed resin
- 50 batches
- 4 g/L/h productivity
- Process time: 12 hours

Rapid cycling chromatography with Sartobind® Q:

- 1.2 L membrane
- 20 cycles/batch
- 176 g/L/h productivity
- Process time: 6.5 hours

40x increase in productivity

Superior aggregate removal

15% cost reduction

compared with packed-bed chromatography

>800 L buffer savings

through reduced chromatography material requirements

References

1 Lacoste, D., Perrin, P., & Stettler, M. (2020). Optimizing and intensifying ADC aggregate removal: A DoE approach to membrane chromatography and rapid cycling. BioProcess International.

https://www.bioprocessintl. com/process-development/ optimizing-and-intensifyingadc-aggregate-removal-adoe-approach-to-membranechromatography-and-rapidcycling

 $@2025\,Sartorius.\,All\,rights\,reserved.\,Sartobind^{\bullet}\,is\,a\,registered\,trademarks\,of\,Sartorius\,or\,its\,subsidiaries.\,All\,other\,third-party\,trademarks\,are\,the\,property\,of\,their\,respective\,owners.\,For\,details\,on\,the\,registrations\,please\,refer\,to\,\frac{https://www.sartorius.com/en/patents-and-trademarks}{}$