

Efficient Separation of Antibody Light Chains From Bispecific Antibody Monomer Using Mixed Mode Resins

Audrey Uzel, Jérôme Champagne, Magali Toueille

Sartorius Stedim Chromatography Resins S.A.S: 48 avenue des Genottes, 95800 Cergy , France

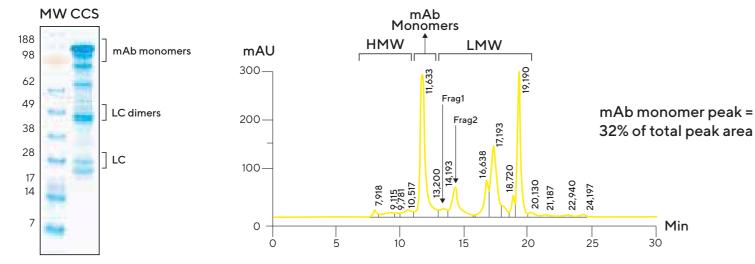
Introduction

Bispecific Antibodies

- One of the most promising classes of next generation therapeutic molecules
- Growing number of such products expected on the market
- Unique challenges in purification compared to monoclonal antibodies (mAbs)

Present Study

- Use of Mixed Mode resins for the purification of bispecific antibodies, focusing on the separation of low molecular weight (LMW) species, especially mAb light chains (LC) from monomeric form
- Evaluation of three Mixed Mode resins: MEP, HEA and PPA HyperCel for purification of a kappa-lambda (κλ)-bispecific monoclonal antibody (mAb) kindly supplied by NovImmune (Switzerland)
- Determination of dynamic binding capacity (DBC) for capture of mAb
- Screening of pH elution conditions on column to separate LMW species from mAb monomer


mAb Feedstock Properties and Performance Evaluation Approach

■ Significant amount of LMW species in cell culture supernatant (CCS): Challenge in monomer purification

Table 1: Properties of CCS Containing (κλ)-Bispecific mAb

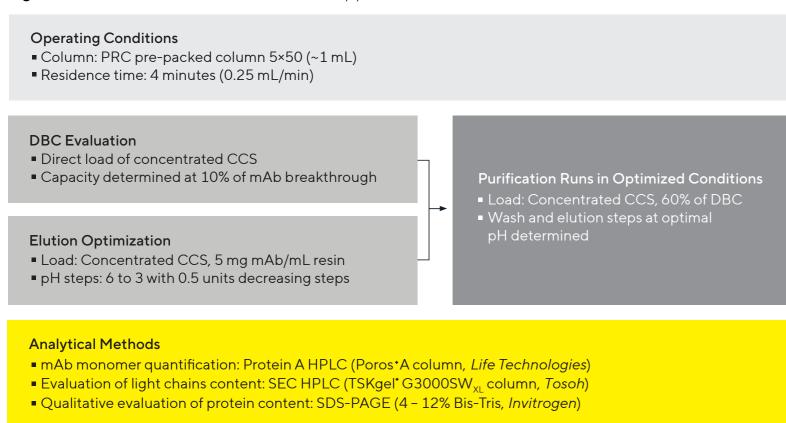
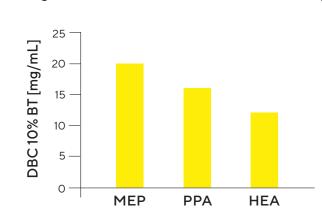

Conditions	mAb Monomer	НСР	НСР	
pH 7.4, 15 mS/cm	2 mg/mL	393,000 ppm		

Figure 1: Characterization of mAb Fragments in CCS with Non-Reducing SDS-PAGE (Left) and SEC HPLC (Right)

Note. HMW = High molecular weight species, LMW = Low molecular weight species, LC = mAb light chain


Figure 2: Resin Performance Evaluation Approach

Evaluation of the DBC of Mixed Mode Resins

Good DBC obtained with MEP and PPA HyperCel resins

Figure 3: Evaluation of the DBC of HyperCel Mixed Mode Resins

On-Column Optimization of Elution Conditions for LMW Species Elimination

Screening of Elution pH for LMW Species

Elimination

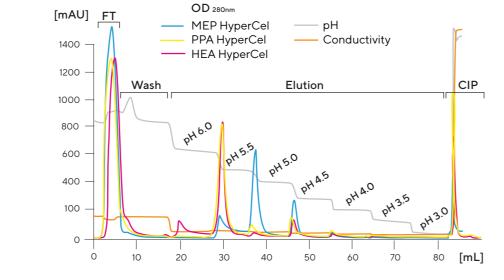
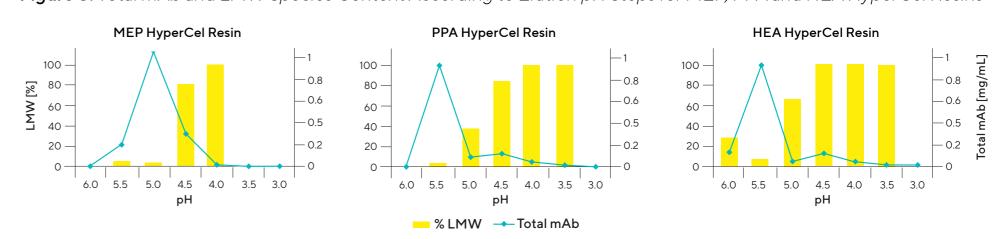



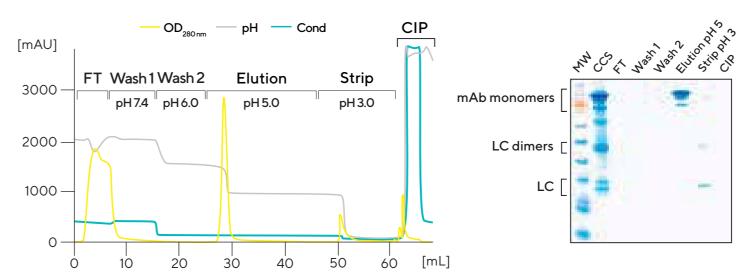
Figure 5: Total mAb and LMW Species Content According to Elution pH Steps for MEP, PPA and HEA HyperCel Resins

■ Separation of LMW species according to pH (LMW eluted at lower pH)

Conclusions on the Optimization of mAb Capture with Mixed Mode Resins

Table 2: Summary of Mixed Mode resin performance during mAb purification optimization

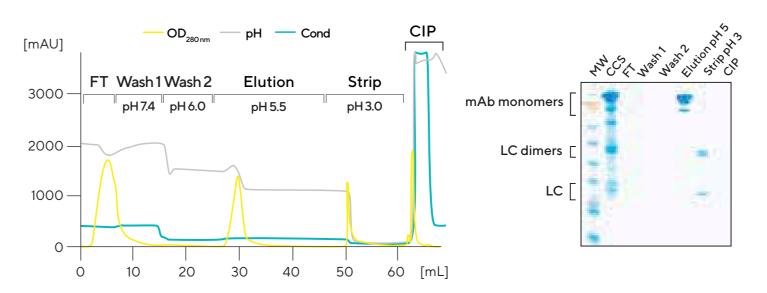
HyperCel Resins	DBC [mg/mL]	Optimal Elution pH	Monomer Purity [%]
MEP	20	5.0	96.2
PPA	16	5.5	96.7
HEA	12	5.5	92.6


- MEP HyperCel resin: Best resin for DBC and elimination of LMW species
- PPA HyperCel resin: Good alternative for elution at mild pH

Capture of κλ-Bispecific Antibody Using Optimised Conditions on Mixed Mode Resins

MEP HyperCel Resin

Specific elution of mAb monomers at pH 5.0, LMW species in pH 3.0 strip fraction.


Figure 6: mAb Capture on MEP HyperCel Resin with Optimized Conditions: Chromatogram and SDS-PAGE Analysis

PPA HyperCel Resin

Specific elution of mAb monomers using mild elution of pH 5.5, LMW species in pH 3.0 strip fraction

Figure 7: mAb Capture on PPA HyperCel Resin With Optimized Conditions: Chromatogram and SDS-PAGE Analysis

 Good performance of MEP and PPA HyperCel sorbents for monomer recovery, elimination of LMW and HCP contaminants.

Table 3: Summary of Performance of Mixed Mode Resins for the Capture of κλ-Bispecific Antibody

HyperCel Resins	Elution	Elution Volume [CV]	DBC _{10%BT} [mg/mL Resin]	Monomer Recovery [% Load]	Monomer Purity [%]	HCP* [Log Red]
MEP	50 mM Na acetate, pH 5.0	2.6	20	94.0	97.4	1.50
PPA	50 mM Na acetate, pH 5.5	4.7	16	91.0	95.9	1.63

*Initial HCP content: 393,000 ppm

Conclusion

- Efficient light chains removal with MEP and PPA HyperCel resins in bind/elute mode: Up to 97% pure monomers after capture step
- High yield of monomer recovery (>90%) and efficient HCP removal (≥ 1.5 log red)
- Best performance (DBC, HCP removal, monomer purity and recovery) with MEP HyperCel resin
- Possible operation of resins in flow through mode to process higher mAb quantities
- Mixed Mode chromatography: A powerful tool to address future challenges in purification of emerging biomolecules