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a b s t r a c t 

As new technologies emerge, deep learning applications are often integral parts of new products as features and 

often as differentiating benefits. This is especially notable in commercial consumer products in everyday applica- 

tions, such as voice assistants or streaming content recommendation systems. Due to the power and applicability 

of these deep learning technologies significant efforts are being directed to the development and integration of 

appropriate models into science and engineering applications to supplant analogue systems that may be highly 

prone to human error. Here we present an innovative, low-cost approach to advance sterility assessment work- 

flows that are required and regulated within drug release/manufacturing processes. The model system leverages 

off-the-shelf hardware as well as deep learning models to detect and classify different microbial contaminations 

in test containers. The paired hardware and software tools were evaluated in experiments using common model 

organisms ( C. sporogenes, P. aeruginosa, S. aureus ). With this approach we were able to detect all three test organ- 

isms across 40 experiments, furthermore we were capable of classifying the present organisms with an average 

classification accuracy of over 87%. 
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Good Manufacturing Practices (GMP) are applied across industries to
rotect consumers. For products directed to supporting human health,
terility testing is critical to ensure the products are free from contami-
ating microorganisms [1] . Sterility testing methods are used widely in
he food and beverage industry, as well as the pharmaceutical and med-
cal industries. The regulatory groundwork that covers product steril-
ty testing is articulated within the United States Pharmacopeia (USP)
 71 > . This compendium has been harmonized mainly with the Euro-
ean and Japanese pharmacopeias [2–4] . According to the USP < 71 > ,
embrane filtration is one method that is prescribed for filterable phar-
aceutical products as it allows screening of large sample volumes. The
nderlying concept of the membrane filtration method relies in part on
he product batch being filtered through microorganism-retentive filters
hat are then incubated in Fluid Thioglycollate Medium (FTM) as well
s Soybean–Casein Digest Medium (SCDM) at 30-35°C and 20-25°C, re-
pectively. This is done to accommodate different types of organisms
nd their unique growth requirements. The respective samples are in-
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ubated for at least 14 days and visually inspected at prescribed inter-
als by highly qualified and trained personnel for signs of growth by
ooking for turbidity. When microbial growth is detected, the entire
ot is maintained in quarantine until a detailed root cause analysis is
ompleted. 

Due to the long incubation times of the conventional sterility test,
t is not always suitable for sterility testing of drugs with a short shelf
ife, such as gene and cell therapy products. To address the requirements
f these new products, the USP informational chapter < 1071 > was re-
eased in 2018. This chapter proposes several methods for Rapid Micro-
ial Testing (RMT) such as Adenosine Triphosphate (ATP) biolumines-
ence, flow cytometry, calorimetric change and nucleic acid amplifica-
ion based on Real-Time Polymerase Chain Reaction (RT-PCR) [5–10] . 

Although these methods provide testing outcomes in a compara-
ly shorter amount of time than the compendial methods outlined in
SP < 71 > , culture-based methods remain the gold standard to examine
roduct sterility in the biopharmaceutical industry [11] . One advantage
ver RMT methods is that they do not require expensive instrumenta-
ion. Nevertheless, culture interpretation is subjective and the manual
ral Network; FTM, Fluid Thioglycollate Medium; CFU, Colony Forming Units; 

 RT-PCR, Real-Time Polymerase Chain Reaction; SCDM, Soybean–Casein Digest 
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Fig. 1. Hardware components of the custom image acquisition 

prototypes: A and B depict the interior and exterior design, 

respectively, as well as the applied components. 
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isual inspection cycles are in contradiction with the general trend to-
ards automated solutions in the biopharmaceutical industry [12] . 

Deep Learning (DL) components are notable parts of our everyday
ives as they enable applications such as face recognition or natural lan-
uage processing. DL approaches have become more accessible over the
ast decade and are now found in almost every science and engineering
omain [13] . Applications of DL in biotechnology range from cell seg-
entation models, that support microscopy image analytics over image-

ased foam sensing in cultivation processes, to the control of biomanu-
acturing processes [14–16] . 

In this study, we present a hardware and software concept in sup-
ort of the USP < 71 > membrane filtration method by providing an au-
omated approach for image capture as well as deep learning methods to
etect and classify contaminations in sterility testing units. The model
ystem was implemented using off-the-shelf hardware for image mate-
ial acquisition, as well as open-source software for model development
nd image data processing. 

Image data of 3 different organisms ( Clostridium sporogenes, Pseu-

omonas aeruginosa, Staphylococcus aureus ) growing in sterility test con-
ainers, as well as negative controls, have been collected to develop a
odel for growth detection and a model for subsequent organism clas-

ification. These models were then applied on test data sets acquired by
he same approach. 

aterials & methods 

xperimental setup 

All sterility tests were performed in accordance with the regulatory
equirements for sterility testing of pharmaceutical liquids [ 2 , 17 ]. In
his study, sterile and contaminated pharmaceutical formulation sam-
les were modeled with either sterile sodium phosphate buffer (Becton
 Dickinson (BD), Franklin Lakes, NJ) or sodium phosphate buffer inoc-
lated with one of the three validation organisms ( Clostridium sporogenes

TCC 19404 , Pseudomonas aeruginosa ATCC 9027 , Staphylococcus aureus

TCC 6538; all acquired from BD), respectively. Here, the inoculation
oncentration ranged from 7 to 58 colony forming units (CFU). The ster-
le or inoculated buffer solutions were pumped out of each test container
Sterisart®, Sartorius Stedim Biotech, Göttingen, Germany) through in-
egral 0.45 μm membrane filter discs. Through this initial step, pre-
xisting contaminants were retained by the membrane on the luminal
ide of each container. Each container was then refilled with fluid thio-
340 
lycolate medium (FTM; BD). The Sterisart® systems were then placed
nto specially designed hardware fixtures and finally placed in an incu-
ator (Thermo Fisher Scientific, Waltham, MA) at 32°C for up to 7 days.
ll medium/buffer pumping procedures were performed with the Ster-

sart® Universal Pump (Sartorius Stedim Biotech, Göttingen, Germany)
o ensure a uniform fill level of 200 ml in the interest of cross culture
eproducibility. 

mage acquisition 

To collect training and evaluation data for the development of the DL
odels, images of sterility tests were acquired by 6 matched prototypes

see Fig. 1 ). For this purpose, single-board computers (Raspberry Pi Zero
) were equipped with 12-MP HQ cameras (both Raspberry Pi Founda-

ion, Cambridge, United Kingdom) for the acquisition of top-view RGB
mages (1640 ×1232 pixels) of the test vessels. 

Prior to initial acquisition, the focal points of all camera systems
ere manually adjusted to the membrane surface within the Sterisart®

est containers. Because all prototypes were deployed simultaneously
n a dark incubator environment, separate illumination units (NeoPixel
ED Ring 24, Adafruit, New York, NY) and a custom 3D-printed hous-
ng were introduced for each image acquisition unit. This was done to
nsure consistent lighting conditions across each test unit. The proto-
ypes were controlled via an embedded Node-RED (v1.0.6) workflow
ith a graphical user interface that allowed live monitoring of the ex-
eriment in progress as well as the adjustment of various acquisition pa-
ameters (exposure, acquisition interval, labeling). Images of the exper-
ments were taken at 5-minute intervals (see Supplemental Material for
ime-lapse videos; Vid. A1-A3) and sent directly from the prototypes to a
edicated cloud storage service (Microsoft Azure Blob Storage, Microsoft
orporation, Redmond, WA) for further processing. In total, 46070 im-
ges were acquired in 40 experiments, of which 10,444 images were
btained from 10 sterile controls. 

odel training 

The acquired image data sets were used to train DL models for mi-
robial growth detection and classification. For this purpose, two con-
olutional neural networks (CNNs) were developed. Initially, a convo-
utional autoencoder was trained in an unsupervised anomaly detection
pproach. Autoencoders are hourglass-shaped neural networks that con-
ist of at least one input layer, a bottleneck layer with lower dimension-
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Fig. 2. Reconstruction Error/time series plot of trials with all validation organ- 

isms and a control run show the general applicability of the proposed autoen- 

coder model to detect contaminations in sterility testing. The initial inoculated 

concentrations of C. sporogenes, P. aeruginosa and S. aureus for the experiments 

shown were 7, 48 and 34 CFU, respectively. 

l  

(

M

 

t  

t  

t  

g  

t  

s  

i  

m  

f
 

1  

e  

c  

c  

t

𝑃  

𝑅  

𝐹  

𝑊  

𝑊  

H  

f  

d  

u  

c

R

 

f  

o  

o  
lity, and usually an output layer with the same dimensions as the input
ayer [18] . During model training, the network was taught to recon-
truct images from the compressed feature representation stored in the
ottleneck layer. In the following, a second CNN was trained to classify
he microbial growth present in the captured images. 

Software for image processing and model development was imple-
ented using the libraries OpenCV (v. 4.5.3) and PyTorch (v.1.10; Face-

ook Research, Menlo Park, CA) in the Python programming language
v. 3.8) [ 19 , 20 ]. Both models were trained on a virtual machine in the
zure Machine Learning (Microsoft Corporation, Redmond, WA) envi-
onment using a NVIDIA Tesla K80 graphics processing unit with an
ntel Xeon E5-2690 v3 processor. 

Before model training, all images were rescaled to 492 ×369 pixels
nd cropped to fit the area of the filter membrane, resulting in a reso-
ution of 180 ×180 pixels. While a market-ready application would need
o ensure a full view into the test container, the centric position of the
enting filter prevents full sight. Therefore, the filter membrane was
dentified as the region of interest because it serves as the best model
or simulating the background of a full view application. Furthermore,
ts circular shape allows for random rotations (360°) without inducing
ajor artefacts, which were combined with slight shearing (5° in x and
 direction) and structural changes like random changes in brightness
nd saturation (10%) to increase the variance of the data set. These aug-
entations were applied on-the-fly during the training of both proposed
odels. 

The autoencoder was trained to minimize the reconstruction loss of
mages from negative control runs. Every 10th image of 5 control runs
as selected for training, resulting in a total of 1000 images over sev-

ral days. This temporal variance was crucial because the reduction-
xidation indicator resazurin, which is present in the cell culture media
sed, triggers a color change to pink. The implemented model uses 3
onvolutional layers with max pooling to compress the input informa-
ion and forces the model to find a latent space representation to store
ts most notable features. Three transposed convolutional layers were
sed to unfold this representation into the original image size (180 ×180
ixels). To calculate the distance, also called reconstruction error (RE),
etween the original image and the reconstruction, the mean-squared
rror (MSE) was used as a loss function (see Eq. 1 ). 

𝑆𝐸 = 

1 
3 ∗ ℎ ∗ 𝑤 

3 ∑
𝑐=1 

ℎ ∑
𝑦 

𝑤 ∑
𝑥 

( 𝑝 ( 𝑥, 𝑦 ) − 𝑝̂ ( 𝑥, 𝑦 ) ) 2 (1)

ere, ℎ and 𝑤 represent the height and the width of the image, respec-
ively. 𝑝 and 𝑝̂ are the input and reconstructed output, that are presented
s a 3-dimensional matrix with 𝑥 and 𝑦 coordinates and 3 color channels
 𝑐). The model was trained with a batch size of 50 and a learning rate of
e − 3 , which was constantly updated by the Adam optimizer [21] . Addi-
ionally, an early stopping mechanism was implemented to prevent the
odel from overfitting on the training data. After 112 epochs, the low-

st reconstruction error of 3.2e − 3 was achieved and the corresponding
odel was used for evaluation. 

Microbial growth classification was performed using a ResNet34 con-
ected to a classifier consisting of two fully connected layers to assign
he extracted features to the 3 investigated microorganisms [22] . Be-
ause the classification is to be performed immediately after detection,
he training and test dataset was composed of images that had a RE
reater than 5e − 3 , but were acquired no later than 4 hours after this de-
ection limit. However, this selection resulted in a balanced training data
et of only 5325 training images, making a transfer learning approach by
sing the pretrained weights on the ImageNet data set necessary [23] .
he model was trained using cross-entropy loss and a batch size of 100

mages. The initial learning rate of 1e − 3 was optimized by AdamW and
ontinuously reduced every 7 epochs by a factor of 0.1 [24] . Before
raining, one third of the training data set was excluded class-wise at
andom and used for on-the-fly validation. The best model performance
n the validation data was achieved after 33 epochs as indicated by the
341 
oss plot. Loss plots of model trainings are displayed in the appendix
see supplemental material Fig. A9 and A10 ). 

odel validation 

The predictive power of the detection model was evaluated using
ime-series plots and heat maps showing the temporal progression of
he reconstruction error during a sterility test and the image regions
hat contribute most to its increase, respectively. The heat maps were
enerated using the method adapted from Chow et al. [25] . In this way,
he pixel-wise, squared difference of the original image and the recon-
tructed output was visualized. The image data sets of 30 different steril-
ty tests performed were used for model evaluation. Subsequently, the
odel was validated with image data sets of the control runs excluded

rom the training data. 
The classification model was evaluated on a test data set containing

617 images selected the same way as the training data, but from differ-
nt experiments. The 3 classes C. sporogenes, P. aeruginosa and S. aureus

ontained 700, 500 and 417 images, respectively. Due to the imbalanced
lass distribution, weighted accuracy and weighted F1-scores were used
o assess the model performance, which are defined as follows: 

 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 

𝑇 𝑃 

( 𝑇 𝑃 + 𝐹 𝑃 ) 
(2)

𝑒𝑐𝑎𝑙𝑙 = 

𝑇 𝑃 

( 𝑇 𝑃 + 𝐹 𝑁 ) 
(3)

 1 = 2 ∗ ( 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ) 
( 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 ) 

(4)

 𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 = 

3 ∑
𝑐=1 

𝑤 𝑐 ∗ 
( 

( 𝑇 𝑃 + 𝑇 𝑁 ) 
𝑁 𝑐 

) 

(5)

 𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹 1 − 𝑆𝑐𝑜𝑟𝑒 = 

3 ∑
𝑐=1 

𝑤 𝑐 ∗ 𝐹 1 𝑐 (6)

ere, TP, TN, FP, and FN correspond to the true positive/negative and
alse positive/negative values, respectively. To compensate for the bias
ue to unbalanced class sets c , the weighted accuracy and F1 score were
sed. Accuracy and F1 score were multiplied by the proportion of the
lass w c in the total number of samples per N c . 

esults & discussion 

This study proposes a concept for automated and digitized support
or compendial sterility testing. First, a hardware prototype was devel-
ped to collect reproducible imagery of the experiments performed. Sec-
nd, a convolutional autoencoder was trained to detect morphological
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Fig. 3. A: Region of interest acquired for exemplary P. aerugi- 

nosa batch over specific time points (1h, 31h, 32h and 41h af- 

ter inoculation). B: Resulting anomaly maps of the same batch. 

The matrix underlying the anomaly maps was normalized [0, 

1], with red and blue representing high and low reconstruc- 

tion error, respectively. C: Reconstruction Error/time plot with 

marked time points that were used for anomaly map genera- 

tion. 

Fig. 4. Confusion matrix of the proposed classification model. 
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hanges within the test container. Finally, a second model was devel-
ped to classify the microbial growth visible in the acquired images
sing three exemplary model organisms. 

Microbial growth of all organisms investigated was detected in all 30
noculated experiments within the first 72h. Fig. 2 shows the time course
f the reconstruction error (RE) for all three validation organisms dur-
ng exemplary experiments. It can be observed that the RE of the sterile
ontrol run (black) stays relatively constant between 2.5 e − 3 and 5e − 3 ,
hile the REs of the inoculated experiments (blue: P. aeruginosa , green:
. sporogenes, and red: S. aureus ) peak at approximately 31, 38 and 61
ours, respectively, with an error up to 1.8e − 2 . The decrease in RE cor-
342 
elates with the spread of whitish growth patterns in later stages of the
xperiments, as these are more similar to the training data showing the
hite membrane of the test vessel than the intermediate growth stages

see Fig. 3 A). 
The temporal difference of the error plots between the organisms can

e explained by the different growth rates and inoculation concentra-
ions. The reconstruction error of different time points is visualized in
ig. 3 C, that shows a time-series plot of an exemplary P. aeruginosa batch
nd corresponding heat maps. The displayed heat or anomaly maps are
ased on the squared pixel-based difference between the original in-
ut image and the reconstructed output. The calculated difference was
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ubsequently normalized between [0,1] [25] . Comparison of the orig-
nal images with the corresponding heatmaps show that the image re-
ions with growth patterns contribute most to the increase of the RE (see
ig. 3 B). The supplementary material includes videos with the graphs
hown in Fig. 3 of experiments with all three validation organisms. Ad-
itionally, a video and a figure of a sterile sample are included (see
upplemental material Vid. A4-A7 and Fig. A8 ). 

Furthermore, the developed classification model showed strong per-
ormance on an independent test set, yielding a weighted accuracy and
eighted F1-score of 88% and 90%, respectively. This indicates reliable
etermination of the detected contamination by the developed MV ap-
lication. 

The confusion matrix (see Fig. 4 ) shows accuracies of beyond 90%
or C. sporogenes and P. aeruginosa , however, only 74% for S. aureus . Due
o the high nonlinearity of the model, the lower predictive performance
or S. aureus cannot be fully explained; but it might be based on the color
nd structural similarity of the image material collected of P. aeruginosa

nd S. aureus (see supplemental material Vid. A2 & A3 ). 

oncluding remarks & outlook 

Sterility testing is a GMP requirement in the production process of
harmaceutical products. The compendial method for sterility testing
f pharmaceuticals is a highly manual approach, requiring trained and
killed personnel. In addition, the manual visual examination of sterility
esting units is a subjective and time-consuming task. In this study, we
onceptualized a cost-efficient hard- and software setup that appears to
vercome these disadvantages by providing an objective and automated
upporting tool for sterility testing. The hardware prototype has proven
o be a useful system to acquire image material in incubator environ-
ents. For the three evaluation organisms ( C. sporogenes, P. aeruginosa

nd S. aureus) , the models demonstrated high sensitivity for the detec-
ion of microbial growth as well as robust performance for the classifi-
ation of the respective organism present in each test unit. 

Due to the agnostic nature of the presented detection approach, its
eneral applicability to different organisms can be assumed. However,
lthough our approach shows promising results in terms of the gen-
ral classification ability of CNNs for macroscopic images of growth
n a liquid environment; further experiments with different organisms,
ncluding organisms with similar morphologies and respective strains,
eed to be performed to show if the approach is applicable in real
est environments. Therfore, future work includes data acquisition and
odel building for additional common microbial organisms that might

e present, as well as data acquisition and model implementation for
ross-contamination. In addition, based upon the flexible software ar-
hitecture, we are planning to integrate and connect the hardware and
espective models to an alert system that would notify the user as soon
s a contamination advances. 

In conclusion, this proof of concept represents the foundational work
or the implementation of a machine vision workflow in sterility testing
sing state-of-the-art deep learning techniques. The ultimate aim is to
treamline a subjective and manual process by transforming it into an
bjective and automated workflow that allows for ultimate integration
nto smart laboratory environments. 
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