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Light microscopy combined with well-established protocols of two-dimensional cell culture facilitates high-throughput quan-
titative imaging to study biological phenomena. Accurate segmentation of individual cells in images enables exploration of
complex biological questions, but can require sophisticated imaging processing pipelines in cases of low contrast and high
object density. Deep learning-based methods are considered state-of-the-art for image segmentation but typically require vast
amounts of annotated data, for which there is no suitable resource available in the field of label-free cellular imaging. Here, we
present LIVECell, a large, high-quality, manually annotated and expert-validated dataset of phase-contrast images, consisting
of over 1.6 million cells from a diverse set of cell morphologies and culture densities. To further demonstrate its use, we train
convolutional neural network-based models using LIVECell and evaluate model segmentation accuracy with a proposed a suite

of benchmarks.

uantitative imaging offers unequaled spatial and tempo-

ral resolution when measuring biological phenomena,

which has led to its wide use in cell biology and biomedical
research. Two-dimensional (2D) cell monolayer models of mam-
malian cells are a cornerstone of cellular based research due to
well-established and reproducible protocols. The low dimensional
complexity of 2D cultures readily facilitates experimental methods,
including imaging. In particular, cellular assays are an accessible
medium to obtain physiologically relevant data from images, allow-
ing quantification of the effects of interventions on cell count, pro-
liferation, morphology, migration, cellular interactions and when
coupled with fluorescence imaging, protein expression dynam-
ics and cellular events, for example cell death. In pharmaceutical
research, the ability to quantify such metrics from high-throughput
imaging systems can drive drug discovery by facilitating fast com-
pound screening and efficacy testing. These analyses ultimately rely
on robust identification and segmentation algorithms, particularly
if the goal is to investigate at the level of individual cells. Many such
segmentation algorithms rely on the presence of a fluorescent label.
However, mounting evidence indicates fluorescent sensors can alter
biological responses by effecting physiological change. Fluorescent
proteins have been linked to increased cell death", reactive oxygen
species accumulation and mitotic arrest’, interruption of critical
cell signaling pathways’ and impairment of actin-myosin interac-
tions’. Moreover, stable expression of fluorescent proteins requires
genetic manipulation, which may not always be possible in more
physiologically relevant primary cell types® such as patient-derived
induced pluripotent stem cells®. Because of this, recent years have
seen renewed interest in label-free imaging approaches.

However, label-free imaging presents unique challenges.
Numerous studies have developed sophisticated label-free imaging
technologies, such as quantitative phase imaging’, but these often
require users to have expertise and complex hardware. While simple
brightfield and phase-contrast imaging remains the most accessi-
ble and widespread mode of label-free imaging, they offer limited

contrast for resolving cells grown in a monolayer. Furthermore,
the morphology of a cells in culture can vary dramatically, not only
across cell types, but also due to genetics and epigenetics, micro-
environmental factors, stages in the cell cycle or differentiation
processes and in response to treatment, making segmentation of
individual cells from label-free images of cultured cells a challenge.

Open-source and commercially available image analysis pack-
ages have been developed to tackle this problem®, but too often
require careful algorithm customization and rigorous tuning of
parameters specific to the cell morphology in the image. The rise in
popularity of convolutional neural networks (CNNs) offers a poten-
tial solution to this problem and indeed, CNNs can learn and adapt
to identify and segment objects of enormous variety. However,
for a CNN to produce good results, it first requires training with
high-quality datasets representative of the breadth of the problem
to be solved.

In the seminal paper on U-net'’, a CNN trained on only 35
images outperformed every other entry in the IEEE International
Symposium on Biomedical Imaging 2015 cell tracking and seg-
mentation challenge. Since U-net, there have been numerous
advances applying CNNss to biological images of cells, but develop-
ment of publicly available training datasets has been limited. An
early open-source light microscopy dataset was DeepCell', which
comprised manually annotated data and trained CNN models for
the single-cell segmentation of bacterial and mammalian cells.
However, the DeepCell dataset consists of fewer than 50 images;
arguably, this is too small to enable a trained CNN model to gener-
alize to images beyond its training dataset. Since then, new datasets
have been published, but are similarly limited in size, for example
50 images of single cells'’, or available cell types, for example 644
images of rat CNS stem cells'*. EVICAN, the largest such dataset so
far comprises 4,600 images and 26,000 cells, including 30 different
cell types and images acquired with different microscopes, modali-
ties and magnifications”. Although EVICAN boasts great diversity,
it averages only 5.7 cells per image, which makes it challenging to
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apply to all biologically relevant cell culture conditions where cell
density may be substantially higher. While label-free datasets con-
tinue to be scarce, image datasets containing fluorescently labeled
cells are more readily available. Moen et al.' published a fluores-
cent imaging dataset with 63,280 annotated single cells from seven
cell lines, and the Data Science Bowl 2018 featured a dataset with
37,333 manually annotated cell nuclei'’. More recently, Stringer et al.
describe the generalist segmentation algorithm CellPose trained on
a dataset of approximately 70,000 segmented objects, which pri-
marily comprised fluorescently labeled cells mixed with few light
microscopy images as well as noncellular objects'®. Although all
important advances, datasets commonly used to train and bench-
mark CNN models in nonlive cell imaging literature are still much
larger by comparison: the widely used Microsoft COCO dataset”
consists of 328,000 images with a total of 1.5 million segmented
instances, and the Open Images V6 dataset” consists of more than
900,000 images with 2.7 million segmented instances. Therefore, to
maximize the potential of applying CNNss to label-free cell segmen-
tation across all different cell morphologies, a large, high-quality
dataset is crucial.

In this study, we present LIVECell (Label-free In Vitro image
Examples of Cells), a new dataset of manually annotated, label-free,
phase-contrast images of 2D cell culture. LIVECell consists of more
than 1.6 million annotated cells of eight morphologically distinct
cell types, grown from early seeding to full confluence, and has
undergone rigorous quality assurance to minimize bias in the anno-
tations. As a proof of concept of the use of LIVECell, we also present
trained models developed to segment individual cells, for applica-
tion in new research to enable label-free single-cell studies. Finally,
in the interest in standardizing evaluation of such models, we pro-
pose a suite of benchmarks, which will readily facilitate continued
development and performance comparison of future models.

Results

LIVECell. LIVECell consists of 5,239 manually annotated,
expert-validated, Incucyte HD phase-contrast microscopy images
with a total of 1,686,352 individual cells annotated from eight dif-
ferent cell types (see Supplementary Note). These cell types, span-
ning the small and round BV-2 to large and flat SK-OV-3 and
neuronal-like SH-SY5Y, were chosen to maximize diversity to
ensure LIVECell’s broad use for future machine learning develop-
ment. Principal component analysis (PCA) of commonly used cell
morphology metrics reveals the extent of that diversity, showing
distinct clusters for each chosen cell type (Fig. 1). LIVECell also fea-
tures annotated images of cells grown from the initial seeding phase
to a fully confluent monolayer (Supplementary Fig. 2), resulting
in great variation in cell size, that is, very small to over 6,000 um?,
and cell counts per image, that is, very few to over 3,000 objects
(Supplementary Fig. 3). Whereas previous efforts are limited in
terms of cell density'>'>'*, LIVECell enables the training of segmen-
tation models with applicability to the entire time course of a typical
cell biology experiment.

To ensure annotation quality given such challenging images,
several precautions were taken. First, the images were annotated
by a dedicated team of professional annotators (CloudFactory)
that received training on cell segmentation by an experienced cell
biologist rather than crowdsourcing annotators. Second, images
were split into balanced batches that spanned cell types and
experiment time points, using a design of experiments approach?'
and uploaded for annotation batch by batch. This batchwise
approach was done to minimize the risk of introducing bias into
any single part of the dataset as annotators will become more
experienced and possibly more accurate as the project progresses.
Last, all images passed through two rounds of quality assurance
to ensure top quality, first by an annotation manager and then by
an experienced cell biologist.
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LIVECell benchmark suite. We have designed a series of evalua-
tion tasks that exploit the diversity and breadth of data available in
LIVECell while also providing a platform for researchers to fully
assess the suitability of their given model design for cell segmenta-
tion. Each test within this suite of benchmarks focuses on a different
aspect of performance:

(1) LIVECell-wide train and evaluate: here, we include all cell types
in LIVECell for training and evaluate the models on the entire
test dataset as well as each individual cell type. In addition to
providing information on overall model performance, this task
provides high-level insight into which cell types and morpho-
logical characteristics may be difficult for a model to adapt to.

(2) Single cell-type train and evaluate: to allow comparison of the
relative challenge imposed by the different cell types, this task
trains and evaluates a model on a single cell type. This permits
focused and small-scale experimentation as well as provides an
opportunity for fine-tuning a model if one cell type is of par-
ticular interest.

(3) Single cell-type model transferability: by training models on a
single cell type and cross-evaluating it on others, this task as-
sesses a given model’s ability to generalize to cell types unseen
during training. By comparing which cell types generalize well
to each other, this test provides a means to investigate how
hyperparameter configuration or architecture design affects
transfer learning potential.

(4) Validation against fluorescence-based cell counts: this task ap-
plies trained models to an image set unseen during training
containing two cell types, including one cell type that is not pre-
sent in LIVECell at all, expressing a nuclear restricted red fluo-
rescence protein. As automated cell counting based on nuclear
labels is standard practice, comparing the fluorescent nuclei
counts to the object count output by a trained model provides
opportunity for validation and ultimately ensures biological
relevancy.

To evaluate cell detection and segmentation quality in tasks 1
and 2, standard practices from the Microsoft COCO evaluation
protocol'’ were used but slightly modified to better reflect cell sizes.
For our evaluation metric, we report the overall average precision
(AP) and average false-negative ratio (AFNR) rather than the com-
monly used values at matching intersection over union (IoU) of
50%, as the overall scores provides a more extensive and rigorous
assessment of model performance. Task 3 is evaluated by quantify-
ing how well the models generalize to unseen cell types on average
using a new transferability index. Task 4 is evaluating by assessing
the explained variance of fluorescence-based counts compared to
model-based ones and testing to how far in terms of object counts
the relationship is linear.

LIVECell benchmark performance. To serve as baseline for
future method development using LIVECell, two state-of-the-art
CNN-based instance segmentation models, one anchor-based
and the other anchor-free, were trained and evaluated using the
benchmark tasks (Fig. 3). When trained and evaluated on all of
LIVECell, the two models achieve impressive segmentation results
(Supplementary Fig. 4) and similar AP for segmentation (47.9 and
47.8% for LIVECell, Fig. 3a), which is comparable to each models
published performance on Microsoft’s COCO dataset**. Further
inspection of model precision across different IoU thresholds
reveals disparity in performance between cell types; for example,
the precision for the neuroblastoma cell line SH-SY5Y is very
sensitive to the IoU threshold, whereas the breast cancer cell line
SkBr3 demonstrates robust precision for all IoU levels less than 80%
(Supplementary Fig. 5a,b). While precision appears similar between
the two models, the anchor-based model achieved a lower AFNR
than the anchor-free model (45.3 and 52.2%, respectively, Fig. 3b
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Fig. 1| Morphological diversity of cell types comprising LIVECell visualized using PCA. a, Scatter plot of the first two principal components demonstrate
the diverse spread of morphologies represented by images in LIVECell between and within cell types. b, Loading plot of PCA shows how each morphology
metrics influence the directions of the component values. ¢, Representative examples of images on each axis and quadrant of the principal component plot
with their principal component values plotted. Morphological interpretations, based on the loading values, are provided for each quadrant. Abbreviated
metrics names are explained in the Methods. Scale bar represents 100 um and applies to all images.

and Supplementary Fig. 5¢,d), underscoring the importance of con-
sidering both metrics for comprehensive evaluation.

Training and evaluating on a single cell type further highlighted
how the cell types represented in LIVECell vary greatly in terms of
difficulty. For instance, model performance on SkBr3 cells scored
quite high (detection and segmentation AP 64-66%) whereas
SH-SY5Y scored much lower (AP 22-28%) relative to other cell
types (Fig. 3c and Supplementary Fig. 6). Both models achieved
similar AP for each of the eight cell types. Notably, both models
perform better on each individual cell-type test set when trained
on all cell types compared to training on that single cell type (com-
pare Fig. 3a and ¢, details in Supplementary Table 7) indicating
that a cell-type universal model is preferable to a specific one. The
anchor-free model benefited more from training on all of LIVECell
compared to the anchor-based model and increased 6.6 AP points
on average compared to 2.0 (P=0.01, paired t-test of null hypoth-
esis that the anchor-free increase is less than or equal to that of the
anchor-based). In the transferability task, models trained on a single
cell type vary greatly in their ability to generalize to other cell types
(Fig. 3e,f). For example, models trained on A172, BT-474, SkBr3
or SK-OV-3 perform relatively well when applied to all other cell
types, achieving an average transferred AP of 28-36%; however, the
opposite is observed for models trained on only BV-2 images, where
we observe an average transferred AP of only 10.1 and 12.0% for
the anchor-based and anchor-free models, respectively. To quantify
overall transferability, we designed a transferability index, where a
perfect score of 0 indicates a model on average performs just as well
on unseen cell types as the cell type it was trained on with higher
scores are indicative of less transferability. Using this metric, the
anchor-based model better generalizes to unseen cell types overall
than the anchor-free model, achieving a transferability index of 0.98
compared to 1.21.

For the final task, models trained on LIVECell were vali-
dated using an unseen image set of A172 and A549 cells express-
ing a nuclear restricted red fluorescence protein and nuclei were
counted using commercially available software. Cells were seeded
at various densities and grown past full confluence (Fig. 4, A172
in Supplementary Video 1, A549 in Supplementary Video 2 and
Supplementary Fig. 7). Predicted cell counts from the anchor-free
model follow nuclei counts closely over time (Fig. 4a,e) with 98 and
94% linear correlation for A549 and A172 up to 95% confluency
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(Fig. 4b,f). The anchor-based model performs similarly below 95%
confluency (linear correlation 99% for A549 and 98% for A172).
While both models display less reliable object counts in overconflu-
ent images, the accuracy of object counts from the anchor-based
model drastically deteriorates when the number of cells per image
surpasses 1,300-1,500 (Fig. 4c,d,g,h). To quantify this, we performed
iterative goodness-of-fit tests to evaluate the linear relationship of
fluorescent-based versus model-based object counts to identify an
object density threshold where each model begins to fail. Here, we
observe that linearity holds for the anchor-free model at higher
object counts (up to 2,031 and 1,948 objects per image for A549
and A172, respectively) compared to the anchor-based model (up
to 1,403 and 1,328). To confirm accuracy of our fluorescence-based
cell counts, we quantified rates of unlabeled and multinucleated
cells and determined that they do not bias the results reported above
(Supplementary Note).

LIVECell scale experiments. The size of LIVECell permits inves-
tigation into how the number of instances in the training set
affects segmentation performance. Anchor-free and anchor-based
models were trained on subsets of the full LIVECell training set,
evenly selected across cell types and time points, and evaluated
on the complete LIVECell-wide test set. This revealed that the
segmentation AP monotonically increased with training set size
without either model reaching a saturation point (Fig. 5a-c) and
false-negative ratio decreased monotonically (Fig. 5d-f), suggest-
ing larger training sets can further improve performance both in
terms of AP and AFNR. Notably, AP increases considerably when
training on more than 2 and 5% of LIVECell (that is, 24,197 and
51,488 instances, comparable to the number of annotated objects
in the largest pertinent datasets so far'>'®). Overall, increasing the
training set size from 2 to 100% of LIVECell resultsina 7.7 and 11.5
point increase in AP for the anchor-based and anchor-free models,
respectively. It is also noted that while both models achieve similar
performance when trained on all LIVECell (47.9 and 47.8% AP),
the anchor-based model performs better on smaller subsets (for
example, 40.2% AP at 2% of LIVECell, compared to 36.2%).

Assessing transferability between LIVECell and other datas-
ets. Although LIVECell is a highly comprehensive dataset for cell
segmentation, it does not fully cover all aspects of biology and
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Fig. 2 | lllustrative examples of annotated phase-contrast microscopy images and histograms showing cell size distributions of all cell types in
LIVECell. Example images for a, A172, b, BT-474, ¢, BV-2, d, Huh7, e, MCF7, f, SH-SY5Y, g, SkBr3 and h, SK-OV-3 cells are shown in pairs, with the original
phase-contrast image on the left and the overlaid annotations shown on the right in green. Images demonstrate morphological variety represented by
the chosen cell types. Histograms show cell size distributions in um? for each cell type. On each histogram, the vertical color panes indicate the different
cell size categories used for model evaluation and the percentages above each pane indicate how many in each cell type belong to each size category.
The left-hand gray pane indicates small cells (defined as smaller than 320 um?), the middle white pane indicates medium-sized cells (between 320 and
970 um?) and the right-hand gray pane indicates large cells (larger than 970 um?). Scale bar represents 150 um and applies to all images.

imaging. Due to equipment availability, all LIVECell images were
acquired using the same imaging platform and magnification
in contrast to multi-instrument datasets such as EVICAN" and
CellPose'®. To demonstrate that LIVECell is a valuable resource for
light microscopy imaging modalities and magnifications beyond
our imaging platform, we applied models trained on LIVECell
to the EVICAN and CellPose evaluation datasets, which includes
Zernike phase-contrast, fluorescence and brightfield images from
multiple instruments and multiple magnifications. We found that
LIVECell-trained models transfer out-of-the-box given appropriate
digital preprocessing (Supplementary Note). In fact, with no addi-
tional training on data beyond LIVECell, our anchor-free and -based
models achieve an overall AP of 36.7 and 59.6% on the EVICAN
easy evaluation dataset, outperforming the previously reported
EVICAN results of 24.6% (Supplementary Table 4). Furthermore,
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our models achieve similar accuracy to the CellPose baseline
models on the CellPose evaluation dataset (AP=24.5 and 26.9%,
Supplementary Fig. 13). The CellPose results were particularly
surprising given its dataset mostly comprises fluorescence-based
images. In contrast, we find that the CellPose generalist model
struggles to segment certain cell types and many of the highly con-
fluent LIVECell evaluation images (AP=13.9%, Supplementary
Note). All of this evidence taken together highlights how such
a large, high-quality dataset such as LIVECell fills a critical need
in the field.

Discussion

Achieving accurate object-by-object segmentation is a challenging
task in any machine learning application and while fully unsuper-
vised approaches are being developed, current CNN-based instance
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Fig. 3 | Performance evaluation of CNN models trained on LIVECell. a-f, Bar charts of cell segmentation performance, as reported by mask AP (%), for
the LIVECell-wide train and evaluate task (a) and single cell-type train and evaluate task (c), cell detection performance, as reported by mask AFNR (%)
for the LIVECell-wide train and evaluate task (b) and single cell-type train and evaluate task (d), as well as heatmaps for all possible transfers on the single
cell-type model transferability test for the anchor-free (e) and anchor-based model (f) as reported by AP.

segmentation typically require large, annotated datasets and
well-designed benchmarks to fairly assess performance and bias.
LIVECell introduces the largest high-quality resource for label-free
cell segmentation. By including a wide variety of cell morphologies
(Fig. 1) and confluence levels (Supplementary Fig. 2), LIVECell can
facilitate development and assessment of segmentation algorithms
for biologically relevant cell culture experiments. In contrast to
other instance segmentation datasets, LIVECell also presents chal-
lenges unique to label-free 2D cell culture image data. First, the aver-
age number of objects per image in LIVECell is 313 (Supplementary
Fig. 3), which is substantially higher than typical instance segmen-
tation datasets such Microsoft COCO" (7.8 objects per image) or
dense datasets such as SKU-110K** (147.4 objects per image). To
avoid slow performance speed and heavy memory requirements, an
optimal CNN model for LIVECell must be appropriately designed
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to handle these high object counts. The two models presented here
demonstrate linear increases in processing time with object count
(see details on evaluation in Supplementary Note) and we propose
that an ideal model design would minimize or bypass this linear
trend. Furthermore, we found the definitions for small, medium and
large object size categories in the standard COCO evaluation pro-
tocol” did not appropriately reflect cell sizes observed in LIVECell
(Fig. 2) and biased size-based evaluations, which is exacerbated
by the nonuniform distribution of object sizes within LIVECell
(Supplementary Fig. 3). Only by adjusting the size category defini-
tions to better reflect the biology present were we able to separately
evaluate segmentation accuracy on small, medium and large objects
(Supplementary Table 7).

The anchor-based and anchor-free segmentation models we
trained with LIVECell show convincing segmentation performance

NATURE METHODS | VOL 18 | SEPTEMBER 2021|1038-1045 | www.nature.com/naturemethods
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Fig. 4 | Validation of anchor-free and anchor-based model using fluorescent nuclei count. a-h, Predicted model counts are compared to fluorescence
nuclei counts on A172 and A549 cells. Time course graphs show per-image object counts across different cell seeding densities over time for fluorescent
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(Fig. 3) on par with their published performance with Microsoft’s
COCO dataset’>”. Comparing our models to those trained on
similar datasets, such as EVICAN, we observe substantially higher
segmentation accuracy, where our models achieve AP scores
greater than 80% using an IoU threshold of 50% (Supplementary
Table 7 and Supplementary Figs. 5 and 6) compared to the 61%
reported in the EVICAN study, highlighting the benefit of train-
ing on a larger-scale dataset'. Certain cell types proved to be par-
ticularly difficult for the segmentation models. For example, the
accuracy scores for the neuroblastoma cell line SH-SY5Y appears
notably lower than that of the other cell types. Indeed, neuronal
cells have a unique morphology compared to the other cell types,
tending to be highly asymmetric and concave-shaped due to their
characteristic branching neurites. Asymmetric and concave mor-
phologies have proved challenging for cell segmentation models'®
and put high demands on models to learn long-range depen-
dencies to correctly assign pixels to the correct object instance.
Convolutions, the cornerstone of CNNG, effectively describe trans-
lation equivariance and locality but struggle to model long-range
dependencies. Recent model architectures®*® aim to relieve these
limitations and may be necessary to accurately segment this type of
specific morphology.

Beyond direct application of LIVECell-trained models, LIVECell
also offers a robust dataset for pretraining before fine-tuning on
small datasets from other instruments due to its size, morpho-
logical diversity and high object density. In particular, evaluating
the extent to which models trained on LIVECell’s Incucyte HD
phase-contrast images benefits the analysis of other light micro-
scopic modalities, including brightfield and differential interference
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contrast images, and offers an interesting domain transfer problem
for future research. In terms of biological limitations, many cell
types can become overconfluent, continuing to divide as cells pack
closer and closer together. To explore how our models perform
in such a scenario, we compared model-predicted cell counts to
fluorescence-based cell counts on images of cells growing overcon-
fluent until they started to die off (Fig. 4, Supplementary Videos 1
and 2 and Supplementary Fig. 7). The anchor-free model was able
to generalize well to overconfluent images without adjustments,
although it slightly underreported A172 cell counts and showed
greater variance of A549 cell counts in overconfluent images. On
the other hand, the anchor-based model struggled when cells
reached high confluence and began making erratic predictions,
which is particularly intriguing considering that the anchor-based
model showed a lower false-negative ratio on the LIVECell segmen-
tation tasks (Fig. 5d-f). Therefore, while both models demonstrate
similar detection and segmentation performance on LIVECell, they
differ greatly in their ability to extrapolate to more extreme
experimental conditions.

This observed performance difference between the anchor-based
and anchor-free models on highly confluent images may be a result
of their inherently different detection mechanisms. Anchor-based
detection means that the localization of objects is based on a set
predefined anchor boxes, that is rectangles of different sizes and
aspect ratios. These anchor boxes are used to predict the existence
of objects at each spatial location in the CNNs intermediate repre-
sentation of the original image. The most confident top few anchor
boxes over a certain threshold are selected to represent the bounding
boxes of predicted objects. Then for instance segmentation, the area
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Fig. 5 | Impact of scale of dataset on segmentation performance. Each model was trained on subsets of the LIVECell training set, corresponding to 2, 4,
5,25, 50 and 100% of total number of images. a,d, The resulting models were then evaluated by calculating segmentation AP on the complete LIVECell
test (a) and AFNR (d). To further explore the effects of increasing the dataset size we broke down the metrics to each loU level between 50 and 95%
with a step size of 5%. b,c,e f, The precision per loU for the anchor-free (b) and anchor-based (¢) models trained on different amounts of the dataset was
calculated, as well as the FNR for the same anchor-free (e) and anchor-based models (f).

within each bounding box is segmented to outline the contained
object as well. Anchor-free detection on the other hand, means that
the object detection does not depend on a predefined set of anchor
boxes. Instead, it uses a fully convolutional one-stage (FCOS) object
detection” to predict the center points of objects and directly define
bounding boxes, circumventing the need for additional hyperpa-
rameters. We speculate that these differences may be due to the
requirement to tune anchor box sizes for the LIVECell segmentation
benchmarks may cause the model to struggle at detecting cells at even
higher density. Fine-tuning the anchor boxes for images with higher
confluence may mitigate the performance difference but could sac-
rifice model accuracy at lower densities. These observations open
possibilities for future research into the exact cause of the perfor-
mance discrepancy and how different CNN architectures handle
overconfluent images.

It should be noted that when setting out to annotate LIVECell,
we intentionally chose not to attempt separation of a large cell mass
into individual cells. Annotations in such regions where cell bound-
aries are not readily visible (arrows, Supplementary Fig. 2) would
be arbitrary and risk introduction of bias, which is consistent with
EVICAN® that also uses partially annotated images. We do not view
this as a limitation, but rather believe that this choice will improve
the applicability of models trained on LIVECell. In most applica-
tions, segmentation quality is more important than detecting every
possible object if detection is not biased, for example measures of
morphology statistics or within-cell fluorescence when coupled
with fluorescent imaging. Poor segmentation will degrade data
quality, which will propagate through downstream use of segmen-
tation results. Even worse, if segmentation performance is biased,
this bias may compromise any biological findings relying on seg-
mentation. We note, however, that LIVECell’s partially annotated
images may introduce a risk that models struggle to train well and
miss more cells than necessary. However, we do not experience
any such problems and all models converge well (Supplementary
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Figs. 9 and 10) and the dataset scale experiments shows that not
only does the precision increase with the increase scale, but the
false-negative ratio also improves (Fig. 5d-f). Furthermore, both
models transfer well to other imaging platforms out-of-the-box
(Supplementary Fig. 12). The size and diversity of LIVECell and
its rigorous benchmarks allows quantification of this bias for the
first both across different cell morphologies and different levels
of confluency.

Two-dimensional light microscopy is an accessible source of
cellular imaging material that allows high throughput. This modal-
ity enables massive amounts of image material to be collected non-
invasively to represent datasets containing millions of cells, which
in turn facilitates biological phenomena to be studied with great
statistical power. To be able to compensate for lack of imaging
resolution, sophisticated imaging processing pipelines are necessary
to capture subtle changes in biology. Accurate cell-by-cell segmen-
tations open the possibilities to explore more complex biological
questions, for example tracking subpopulation response to a treat-
ment condition, investigating migration dynamics in a segmented
time lapse. With LIVECell to enable CNN-model development for
2D cell culture images, we envision such models will serve as the
basis for analyses pipelines that target such exciting and physiologi-
cally relevant topics in biology and medicine.
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Methods

Data collection and annotation. Image acquisition. To ensure the dataset covered
a wide variety of cell morphologies, a diverse set of eight cell types were chosen
(A172, BT-474, BV-2, Huh7, MCF7, SH-SY5Y, SkBr3 and SK-OV-3; see summary
of cell type and morphology in Table 1). All cell lines were purchased from ATCC,
except Huh7 (CLS cell line services) and BV-2 (Interlab Cell Line Collection) and
were cultured as per suppliers’ recommendations. Several wells for each cell type
were seeded in 96-well plates (Corning) and imaged over the course of 3-5d,
every 4h using an Incucyte S3 Live-Cell Analysis system (Sartorius) equipped
with its standard CMOS camera (Basler acA1920-155um). The Incucyte HD
phase-contrast imaging algorithm allows visualization of phase delays produced
by cells without the phase annulus or phase ring found in conventional Zernike
phase images. Because of this, LIVECell phase-contrast images are characterized
by less pronounced halo artifacts and more high-frequency content than other
phase-contrast modalities. Phase-contrast images were acquired using a X10
objective from two positions in each well adding up to a total of 1,310 images
(1,408 % 1,040 pixels corresponding to 1.75 X 1.29 mm?) that were each cropped into
four equally sized images (704 X 520 pixels corresponding to 0.875 X 0.645 mm?)
that were then annotated.

Image annotation. Since image annotation is labor-intensive, a managed team

of professional annotators (CloudFactory) were trained to perform single-cell
segmentation. To reduce the risk of introducing bias due to annotators gaining
experience over the course of the task, the dataset was split into eight batches
balanced over cell types, timestamps and wells using generalized subset designs®' as
implemented in MODDE v.12.1 (Sartorius Data Analytics). The dataset was then
uploaded for annotation batch by batch. Before starting any annotation, one well
per cell type was selected at random to be included in a test dataset for machine
learning model evaluation. Selecting a complete well, instead of the standard
practice of selecting images at random, ensure that the training and test set are
physically separate, greatly reducing the risk of data leakage by, for example, the
plate texture.

All cells in all images that could be unambiguously identified by an experienced
cell biologist were then annotated by outlining them with polygons using a
commercially available, cloud-based, annotation software (V7Labs Darwin).

To train the annotation team, the annotation managers were first trained on a
one-to-one basis until they were able to annotate the images with sufficient quality.
To scale up, the annotation managers then trained the remaining team members.

Quality assurance. Due to the low contrast and high object density making
annotation challenging, two levels of quality assurance were used to minimize the
risk of introducing label noise. The first level was performed by the annotation
managers and second round by an experienced cell biologist. During quality
assurance, each image was inspected and any images with faulty annotations were
sent back to the annotators along with feedback. Examples of faulty annotations
include cells that were not annotated but should have been, cells outlined with a
too course polygon leading to a jagged segmentation mask, large cells that had
been split into multiple cells, debris annotated as cells and so on. An image sent
back to the annotator was revised before sent for new quality assurance. If the
annotation manager approved the image, it was sent to a cell biologist for final
approval. Images passing both rounds of approval were included in LIVECell. To
assure that the annotation managers assessments stayed consistent, there were
frequent follow-up calls where the cell biologist provided feedback on difficult
cases directly to the annotation managers.

Fluorescence-based cell counts. To enable validation of cell detection by
LIVECell-trained models in biologically relevant cell culture conditions, a separate
set of A172 and A549 cells expressing a nuclear restricted red fluorescence

protein were seeded at various densities and cultured for 5d. Phase-contrast and
red fluorescent images were captured at x10 magnification using an Incucyte

S3 Live-Cell Analysis system. Fluorescence-based cell counts were measured by
detecting and segmenting the fluorescently labeled nuclei using the commercially
available Incucyte Basic Analyzer. These counts were then used to evaluate the cell
counts obtained label-free using segmentation models trained on LIVECell.

Data exploration. Multivariate data analysis of cell morphology. To measure

the morphology of cells, a set of 17 metrics was chosen and measured for each
individual cell in LIVECell. These metrics were chosen to represent different cell
features, including size (area, perimeter, Feret’s diameter), phase-contrast intensity
(mean; minimum; maximum; P5, fifth percentile; P95, 95th percentile) and
intensity distribution (skewness, kurtosis, normalized weighted centroid (NWC)),
texture (standard deviation of intensity (STD)), and shape (eccentricity, roundness,
circularity, solidity and aspect ratio (AR)). Image annotations were used to create
a region of interest for each cell using OpenCV v.4.4.0.46, and standard metric
calculations were run using scikit-image v.0.17.2 or SciPy v.1.5.2.

To provide an overview of the cell diversity represented by LIVECell we
applied multivariate data analysis, specifically PCA. The morphology metrics
were preprocessed based on their distributions over all cells in LIVECell. The
image-wise morphology metric averages were then calculated by summing the

metrics over all cells in each image and dividing by the number of cells per image.
The image-wise averages were then standard-scaled, that is, mean-centered to

zero and scaled to unit-variance. Last, a two-component PCA-model was fitted
and visualized using scatterplots of PCA scores over image-wise average and

PCA loading scatterplots showing the morphology metrics influence on the
PCA-component directions. PCA was calculated using Python libraries scikit-learn
v.0.22.2 and visualized using matplotlib v.3.1.1.

Training segmentation models. Instance segmentation model architectures.

Two state-of-the-art CNN-based instance segmentation models were trained

on LIVECell to evaluate the benchmark tasks’ difficulty. The two models used
inherently different object detection mechanisms: anchor-based and anchor-free.
The anchor-based model was an adapted version of Cascade Mask RCNN* using

a ResNest-200 backbone*”. The anchor-free model was based on CenterMask***
an anchor-free one-stage architecture with a VoVNet2-FPN backbone using FCOS
detection”. Nine models of each architecture were trained on LIVECell, one model
on the whole dataset (LIVECell-wide train and evaluate benchmark) and one for
each of the eight cell types (single cell-type train and evaluate benchmark).

Model training. All training used transfer learning by starting with weights
pretrained on the MS-COCO 2017 dataset” that were then fine-tuned on
LIVECell. Training used a stochastic gradient descent-based solver, a batch size of
16 images per iteration (distributed to two per graphical processing unit (GPU)),
amomentum of 0.9, a linear learning rate warmup with warmup factor of 0.001
and other training parameters listed in. All models were trained on a NVIDIA
DGX-1 server hosting eight NVIDIA Tesla V100 GPUs with 32 Gb of GPU RAM
each, dual 20-Core 2.2 GHz Intel Xeon CPUs and 512 Gb system RAM. The
anchor-based model was implemented using the Python programming language
v.3.6.10 (Python Software Foundation, https://www.python.org/), the deep learning
framework PyTorch’ v.1.5.0 and the object detection library Detectron2

(ref. **) v.2.1. The anchor-free model was implemented using Python programming
language v.3.7.7, PyTorch v.1.5.0 and Detectron2 v.0.3.

All training was run for a predefined set of iterations and the loss on a
validation set, separate from the training and test sets, were monitored to assess
model over- and under-fitting. Model checkpoints were saved and used for
evaluation based on which had the lowest validation loss (Supplementary Figs. 9
and 10) on the rationale that the lowest validation loss represents a good balance
between an under- and over-fitted model. For the anchor-free model trained on
SH-SY5Y the warmup iterations were increased from the default 1,000 to 5,000
as the default parameters resulted in unstable gradients due to the learning rate
increasing too quickly. Because the model did not properly converge in 10,000
iterations, we extended that training to 20,000 iterations in total.

For normalization, pixel intensity values were centered around zero by
subtracting by the global average pixel value for the dataset (128), and then
divided by the global standard deviation (11.58). To reduce the risk of overfitting,
all training used multi-scale data augmentation meaning that image sizes were
randomly changed from the original 520 X 704 pixels to a size with the same ratios,
but shortest side set to one of (440, 480, 520, 580, 620) pixels.

During early experiments, the anchor-based model struggled to detect
small cells (for example, BV-2, Fig. 2¢) using parameters from the original
implementation®. To better segment these cells, the predefined anchor box sizes
were reduced to (4, 9, 17, 31, 64, 127 pixels) compared to standard (32, 64, 128,
256, 512 pixels) and anchor generator aspect ratios are changed to (0.25, 0.5, 1, 2, 4)
compared to the standard (0.5, 1, 2 pixels).

Benchmarking. Segmentation benchmarks. To evaluate models’ performance on
all benchmarks, a slightly modified version of the COCO evaluation protocol'**
was used. The COCO evaluation protocol is widely used in machine learning to
evaluate performance of how well objects are detected and segmented compared
to ground truth annotations, and report overall AP of detection at a certain degree
of overlap between the prediction and ground truth. This is calculated in several
steps. First, the degree of overlap between each prediction and its closest ground
truth object is quantified using the IoU given by:

_ Pred N Target

IoU= ————"—
Pred U Target

If the IoU between the prediction and the closest ground truth target is larger
than a certain threshold, the ground truth target is deemed as correctly detected.
For all ground truth objects, the detection performance is then quantified using the
precision and recall metrics given by:

. TP
Precision = ——
TP + FP
Recall = L
TP + FN

where TP is the number of true positives, FP is number of false positives and FN
is number of false negatives. The recall is monotonically increasing with the IoU

NATURE METHODS | www.nature.com/naturemethods



NATURE METHODS

RESOURCE

Table 1| Overview of cell lines used to construct the LIVECell dataset

Cell type Species Type Wells Time length Why chosen

A172 Human Glioblastoma 4 3d General adherent cell morphology. Over grow each other at higher
densities.

BT-474 Human Breast cancer 4 5d Grow in rafts. Challenging to locate cell boundaries clearly.

BV-2 Mouse Microglia 4 3d Small spherical morphology. Homogeneous population.

Huh?7 Human Hepatocellular 3 4d Low contrast cells. Challenging to locate cell boundaries clearly.

MCF7 Human Breast cancer 4 3d,16h Grow in rafts. Challenging to locate cell boundaries clearly.

SH-SY5Y Human Neuroblastoma 4 3d,12h Neuronal morphology with long protrusions. Overlapping cells.

SkBr3 Human Ovarian cancer 4 3d,12h Low contrast cells. Heterogeneous morphologies.

SK-OV-3 Human Breast cancer 4 3d Heterogeneous morphology.

threshold but the precision, p, is recalculated to be monotonically decreasing by
interpolating the precision at multiple recall levels by:

Pinterp (r) = fr{lg’fp(”)

where p(r/)is the precision given a recall value r, 7’ is each recall value greater or
equal to r at the IoU threshold. The AP at the IoU threshold, AP, is then given by
the area under the curve when plotting the precision against recall for the instance
predictions given at the IoU threshold given by:

n—1

APy = Z(ﬁ+1 — 1) Pinterp (Tit1)

i=1

where 7 is the number of instance predictions. To evaluate LIVECell segmentation
benchmarks, the COCO-standard overall AP is used, meaning that the average
AP over IoU thresholds from 0.5 to 0.95 with a step size of 0.05 is used instead of a
single IoU threshold. In mathematical notation:

_ APgs0 + APoss + ... + APoos
N 10

AP

The overall AP is far more conservative than AP, 5, commonly used in
literature'®, which allows for 50% segmentation mismatch to classify a
detection as correct.

To allow fine-grained evaluation of performance depending on object size, AP
is also calculated separately for objects divided into different size categories. To
better reflect sizes of cells, custom threshold sizes for small, medium and large cells
are used (see distributions and thresholds in Fig. 2). Namely, small cells are set as
smaller than 320 um? (corresponding to 500 pixels), medium cells between 320 and
970 um? (correspond to 1,500 pixels) and subsequently large cells as larger than
970 um?. Because there are so many instances per image in LIVECell,
the maximum detections per image was increased to 3,000 compared to the
standard 100.

Precision and AP quantify how correct detected instances are but provide
little insight into the accuracy of the number of detected instances. We use
the false-negative ratio (FNR) to quantify detection performance, where the
false-negative ratio at certain IoU threshold is given by:

FNRjou = 1 — Recalljoy where Recalljou is the recall of the predictions at
the IoU threshold. Analogous to AP, we calculate the AFNR over multiple IoU
thresholds as:

FNRgs0 + FNRo;s5 4 ... + FNRos
10

AFNR =

to quantify the overall detection performance.

Cell-type generalization benchmark. The single cell-type model transferability
benchmark enables quantification of how well models can generalize to unseen cell
types, by training a single LIVECell cell type and evaluate on the remaining ones.
We report the generalization performance by comparing the model performance on
the cell type it was trained on to its performance on the other cell types. Since cell
types vary in general difficulty, the log-transformed ratio is used for comparison
instead of the absolute performance differences. For each cell type, the relative
generalization performance on one cell type is given by the log,-transformed ratio
of the training set cell type compared to evaluation cell type. In mathematical
notation, the generalization performance of model trained on cell type A evaluated
on cell type B is given by: ry 3 = log, f:—gi where AP, denotes the AP for cell type A.
The transferability index is then given by the negative mean log,-ratio:

1
transferability index = 7m Z Z Tene

g €CeeCe#o
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where 7 is the number of cell types and C the set of available cell types. The
rationale for negating the mean is that in most cases the transferred performance is
lower than for the cell type used for training, resulting in negative score. A positive
score, where lower is closer in performance, is arguably more intuitive to interpret
than a negative unbounded number. The cell-type generalization benchmark was
implemented in Python v.3.6.7 and Pandas v.1.1.5.

Validation against fluorescence-based cell counts evaluation. To quantify

how well models can extrapolate in terms of cell counting compared to
fluorescence-based cell counts, we use two metrics based on linear regression. First,
we test how much variance in fluorescence-based cell counts is explained by the
model cell counts in images with fewer than 1,600 objects, roughly corresponding
to 95% confluence and the confluency level covered by LIVECell. In mathematical
notation, the variance explained, R?, is given by:

_ SSresidual
Sslolal

RP=1

Given fluorescent-based cell counts ygyorescence and model-based cell counts
Ymodel> the residual sum of squares, SS, of images  is given by:

2
SSresidual = § (}’ﬂuorescence,i - ymodel,i)
i

And given the average fluorescent cell count ygyorescent> the total sum of squares
is given by:

- 2
SStotal = § (yﬂuorescence,i - yﬂuorescem)
i

Second, we quantify for how many objects the models are able to sustain the
linear relationship by testing goodness-of fit of linear regression at increasing
fluorescent-based counts of objects. The goodness-of fit-test fails when a nonlinear
regression model explains a statistically significantly larger degree of the variation
in fluorescent-based cell counts compared to the linear one. For a given maximum
fluorescence-based count of objects, we fit a linear regression model of the
fluorescent-based counts from all images with less than or equal to the maximum
number of cells using the model-based counts as regressor. Then we fit a nonlinear
model using the same response and regressor, more specifically K-nearest neighbor
regression using five neighbors (as implemented in Scikit-learn v.0.24.1). To test
goodness-of-fit of the linear model, we test the null hypothesis that the residuals
of the linear and the nonlinear model have equal variances according to Levene’s
test’ (Scipy v.1.3.1). The test is then repeated while incrementing the maximum
fluorescence-based count per image until the null hypothesis is rejected using
P = 107 as threshold. The threshold is selected to correspond to when the model
predictions break down qualitatively. The maximum number of objects where the
null hypothesis is first rejected is then reported as the limit of the model’s linear
extrapolation.

Dataset size experiments. To further explore the impact of dataset size on model
performance the dataset was divided into subsets corresponding to 2, 4, 5, 25, 50
and 100% of the total dataset size. The subsets were created by taking every nth
image from the training dataset n € {50, 25, 20, 4, 2, 1}. To compare to existing
datasets, 2% of LIVECell roughly corresponds to the number of instances in
EVICAN'" and 5% to CellPose'. Both anchor-based and anchor-free models were
trained on these subsets and then evaluated against the full LIVECell test dataset.
For each subset and model, models were checkpointed during training and

the checkpoints where validation loss stopped decreasing was selected to

prevent overfitting.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Images were divided into batches for upload using MODDE 12.1 (Sartorius Data Analytics)
Images were annotated by outlining them with polygons using a commercially available, cloud-based, annotation software (V7Labs Darwin)

Data analysis Code used for data analysis is publicly available at https://github.com/sartorius-research/LIVECell
Cell morphologies were quantified and analyzed using Python 3.6, opencv-python v4.4.0.46, scikit-image v0.17.2, SciPy v1.5.2, scikit-learn
v0.22.2 and matplotlib v3.1.1.
CNN models for segmentation were trained using Python 3.6.10 with PyTorch v1.5.0, Detectron2 v0.2.1 and Python v3.7.7, PyTorch v1.5.0 and
Detectron2 v0.3.
Segmentation benchmarks were evaluated using Pycocotools (https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools).
The cell type generalization benchmark was implemented in Python v3.6.7 and Pandas v1.1.5
The comparison to fluorescence based cell counts was implemented using Python v3.6.7, scikit-learn v0.24.1 and Scipy v1.3.1.
The image preprocessing scripts used for transfer to other datasets were implemented using Python 3.6, opencv-python v4.5.1.48, numpy
1.19.2, and pycocotools v2.0.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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- A description of any restrictions on data availability

The LIVECell dataset, trained models and config files to apply the models have been deposited at https://sartorius-research.github.io/LIVECell/
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size At the beginning of the project, it was not exactly known how many images would be required to successfully train machine learning models.
We chose a set of images representative of the problem we wanted to address and estimated that the resulting number of annotated cells
would surpass 1 million based on average cell densities, which would put the resulting dataset on a similar scale as popular machine learning
datasets such as Microsoft COCO.

Data exclusions  No data was excluded.

Replication All images are being made available. The training, validation and test set splits used in this study are also being made available along with
configuration files to train our models.

Randomization  The test set used to validate machine learning models was selected as one complete well at random per cell type before annotation started.
The validation set used to monitor machine learning model training was selected as random images from the training set.

Blinding Not relevant since no human subjects were involved in the study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) A172, BT-474, MCF7, SH-SY5Y, SkBr3, SK-OV-3 were purchased from ATCC. Huh7 was purchased from CLS cell line services.
BV-2 was purchased from Interlab Cell line collection.

Authentication The cell lines were purchased from commercial sources and cam with paperwork to support the authenticity. The cell lines
chosen are also standard with well documented expression profiles and have been studied extensively in other experiments.
We did not do any further testing for authenticity.
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Mycoplasma contamination The commercial vendor supply the cell lines with mycoplasma status, which were all negative. We did not do any further
testing but keep the cell lines in cultures for less than 3 months at a time to avoid any issues.

Commonly misidentified lines No commonly misidentified cell lines were used.
(See ICLAC register)
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