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Quantitative imaging offers unequaled spatial and tempo-
ral resolution when measuring biological phenomena, 
which has led to its wide use in cell biology and biomedical 

research. Two-dimensional (2D) cell monolayer models of mam-
malian cells are a cornerstone of cellular based research due to 
well-established and reproducible protocols. The low dimensional 
complexity of 2D cultures readily facilitates experimental methods, 
including imaging. In particular, cellular assays are an accessible 
medium to obtain physiologically relevant data from images, allow-
ing quantification of the effects of interventions on cell count, pro-
liferation, morphology, migration, cellular interactions and when 
coupled with fluorescence imaging, protein expression dynam-
ics and cellular events, for example cell death. In pharmaceutical 
research, the ability to quantify such metrics from high-throughput 
imaging systems can drive drug discovery by facilitating fast com-
pound screening and efficacy testing. These analyses ultimately rely 
on robust identification and segmentation algorithms, particularly 
if the goal is to investigate at the level of individual cells. Many such 
segmentation algorithms rely on the presence of a fluorescent label. 
However, mounting evidence indicates fluorescent sensors can alter 
biological responses by effecting physiological change. Fluorescent 
proteins have been linked to increased cell death1,, reactive oxygen 
species accumulation and mitotic arrest2, interruption of critical 
cell signaling pathways3 and impairment of actin–myosin interac-
tions4. Moreover, stable expression of fluorescent proteins requires 
genetic manipulation, which may not always be possible in more 
physiologically relevant primary cell types5 such as patient-derived 
induced pluripotent stem cells6. Because of this, recent years have 
seen renewed interest in label-free imaging approaches.

However, label-free imaging presents unique challenges. 
Numerous studies have developed sophisticated label-free imaging 
technologies, such as quantitative phase imaging7, but these often 
require users to have expertise and complex hardware. While simple 
brightfield and phase-contrast imaging remains the most accessi-
ble and widespread mode of label-free imaging, they offer limited 

contrast for resolving cells grown in a monolayer. Furthermore, 
the morphology of a cells in culture can vary dramatically, not only 
across cell types, but also due to genetics and epigenetics, micro-
environmental factors, stages in the cell cycle or differentiation 
processes and in response to treatment, making segmentation of 
individual cells from label-free images of cultured cells a challenge.

Open-source and commercially available image analysis pack-
ages have been developed to tackle this problem8–10, but too often 
require careful algorithm customization and rigorous tuning of 
parameters specific to the cell morphology in the image. The rise in 
popularity of convolutional neural networks (CNNs) offers a poten-
tial solution to this problem and indeed, CNNs can learn and adapt 
to identify and segment objects of enormous variety. However, 
for a CNN to produce good results, it first requires training with 
high-quality datasets representative of the breadth of the problem 
to be solved.

In the seminal paper on U-net11, a CNN trained on only 35 
images outperformed every other entry in the IEEE International 
Symposium on Biomedical Imaging 2015 cell tracking and seg-
mentation challenge. Since U-net, there have been numerous 
advances applying CNNs to biological images of cells, but develop-
ment of publicly available training datasets has been limited. An 
early open-source light microscopy dataset was DeepCell12, which 
comprised manually annotated data and trained CNN models for 
the single-cell segmentation of bacterial and mammalian cells. 
However, the DeepCell dataset consists of fewer than 50 images; 
arguably, this is too small to enable a trained CNN model to gener-
alize to images beyond its training dataset. Since then, new datasets 
have been published, but are similarly limited in size, for example 
50 images of single cells13, or available cell types, for example 644 
images of rat CNS stem cells14. EVICAN, the largest such dataset so 
far comprises 4,600 images and 26,000 cells, including 30 different 
cell types and images acquired with different microscopes, modali-
ties and magnifications15. Although EVICAN boasts great diversity, 
it averages only 5.7 cells per image, which makes it challenging to 
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apply to all biologically relevant cell culture conditions where cell 
density may be substantially higher. While label-free datasets con-
tinue to be scarce, image datasets containing fluorescently labeled 
cells are more readily available. Moen et al.16 published a fluores-
cent imaging dataset with 63,280 annotated single cells from seven 
cell lines, and the Data Science Bowl 2018 featured a dataset with 
37,333 manually annotated cell nuclei17. More recently, Stringer et al. 
describe the generalist segmentation algorithm CellPose trained on 
a dataset of approximately 70,000 segmented objects, which pri-
marily comprised fluorescently labeled cells mixed with few light 
microscopy images as well as noncellular objects18. Although all 
important advances, datasets commonly used to train and bench-
mark CNN models in nonlive cell imaging literature are still much 
larger by comparison: the widely used Microsoft COCO dataset19 
consists of 328,000 images with a total of 1.5 million segmented 
instances, and the Open Images V6 dataset20 consists of more than 
900,000 images with 2.7 million segmented instances. Therefore, to 
maximize the potential of applying CNNs to label-free cell segmen-
tation across all different cell morphologies, a large, high-quality 
dataset is crucial.

In this study, we present LIVECell (Label-free In Vitro image 
Examples of Cells), a new dataset of manually annotated, label-free, 
phase-contrast images of 2D cell culture. LIVECell consists of more 
than 1.6 million annotated cells of eight morphologically distinct 
cell types, grown from early seeding to full confluence, and has 
undergone rigorous quality assurance to minimize bias in the anno-
tations. As a proof of concept of the use of LIVECell, we also present 
trained models developed to segment individual cells, for applica-
tion in new research to enable label-free single-cell studies. Finally, 
in the interest in standardizing evaluation of such models, we pro-
pose a suite of benchmarks, which will readily facilitate continued 
development and performance comparison of future models.

Results
LIVECell. LIVECell consists of 5,239 manually annotated, 
expert-validated, Incucyte HD phase-contrast microscopy images 
with a total of 1,686,352 individual cells annotated from eight dif-
ferent cell types (see Supplementary Note). These cell types, span-
ning the small and round BV-2 to large and flat SK-OV-3 and 
neuronal-like SH-SY5Y, were chosen to maximize diversity to 
ensure LIVECell’s broad use for future machine learning develop-
ment. Principal component analysis (PCA) of commonly used cell 
morphology metrics reveals the extent of that diversity, showing 
distinct clusters for each chosen cell type (Fig. 1). LIVECell also fea-
tures annotated images of cells grown from the initial seeding phase 
to a fully confluent monolayer (Supplementary Fig.  2), resulting 
in great variation in cell size, that is, very small to over 6,000 µm2, 
and cell counts per image, that is, very few to over 3,000 objects 
(Supplementary Fig.  3). Whereas previous efforts are limited in 
terms of cell density12,13,15, LIVECell enables the training of segmen-
tation models with applicability to the entire time course of a typical 
cell biology experiment.

To ensure annotation quality given such challenging images, 
several precautions were taken. First, the images were annotated 
by a dedicated team of professional annotators (CloudFactory) 
that received training on cell segmentation by an experienced cell 
biologist rather than crowdsourcing annotators. Second, images 
were split into balanced batches that spanned cell types and 
experiment time points, using a design of experiments approach21 
and uploaded for annotation batch by batch. This batchwise 
approach was done to minimize the risk of introducing bias into 
any single part of the dataset as annotators will become more 
experienced and possibly more accurate as the project progresses. 
Last, all images passed through two rounds of quality assurance 
to ensure top quality, first by an annotation manager and then by 
an experienced cell biologist.

LIVECell benchmark suite. We have designed a series of evalua-
tion tasks that exploit the diversity and breadth of data available in 
LIVECell while also providing a platform for researchers to fully 
assess the suitability of their given model design for cell segmenta-
tion. Each test within this suite of benchmarks focuses on a different 
aspect of performance:
	(1)	 LIVECell-wide train and evaluate: here, we include all cell types 

in LIVECell for training and evaluate the models on the entire 
test dataset as well as each individual cell type. In addition to 
providing information on overall model performance, this task 
provides high-level insight into which cell types and morpho-
logical characteristics may be difficult for a model to adapt to.

	(2)	 Single cell-type train and evaluate: to allow comparison of the 
relative challenge imposed by the different cell types, this task 
trains and evaluates a model on a single cell type. This permits 
focused and small-scale experimentation as well as provides an 
opportunity for fine-tuning a model if one cell type is of par-
ticular interest.

	(3)	 Single cell-type model transferability: by training models on a 
single cell type and cross-evaluating it on others, this task as-
sesses a given model’s ability to generalize to cell types unseen 
during training. By comparing which cell types generalize well 
to each other, this test provides a means to investigate how 
hyperparameter configuration or architecture design affects 
transfer learning potential.

	(4)	 Validation against fluorescence-based cell counts: this task ap-
plies trained models to an image set unseen during training 
containing two cell types, including one cell type that is not pre-
sent in LIVECell at all, expressing a nuclear restricted red fluo-
rescence protein. As automated cell counting based on nuclear 
labels is standard practice, comparing the fluorescent nuclei 
counts to the object count output by a trained model provides 
opportunity for validation and ultimately ensures biological 
relevancy.

To evaluate cell detection and segmentation quality in tasks 1 
and 2, standard practices from the Microsoft COCO evaluation 
protocol19 were used but slightly modified to better reflect cell sizes. 
For our evaluation metric, we report the overall average precision 
(AP) and average false-negative ratio (AFNR) rather than the com-
monly used values at matching intersection over union (IoU) of 
50%, as the overall scores provides a more extensive and rigorous 
assessment of model performance. Task 3 is evaluated by quantify-
ing how well the models generalize to unseen cell types on average 
using a new transferability index. Task 4 is evaluating by assessing 
the explained variance of fluorescence-based counts compared to 
model-based ones and testing to how far in terms of object counts 
the relationship is linear.

LIVECell benchmark performance. To serve as baseline for 
future method development using LIVECell, two state-of-the-art 
CNN-based instance segmentation models, one anchor-based 
and the other anchor-free, were trained and evaluated using the 
benchmark tasks (Fig.  3). When trained and evaluated on all of 
LIVECell, the two models achieve impressive segmentation results 
(Supplementary Fig. 4) and similar AP for segmentation (47.9 and 
47.8% for LIVECell, Fig. 3a), which is comparable to each model’s 
published performance on Microsoft’s COCO dataset22,23. Further 
inspection of model precision across different IoU thresholds 
reveals disparity in performance between cell types; for example, 
the precision for the neuroblastoma cell line SH-SY5Y is very 
sensitive to the IoU threshold, whereas the breast cancer cell line 
SkBr3 demonstrates robust precision for all IoU levels less than 80% 
(Supplementary Fig. 5a,b). While precision appears similar between 
the two models, the anchor-based model achieved a lower AFNR 
than the anchor-free model (45.3 and 52.2%, respectively, Fig. 3b 
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and Supplementary Fig. 5c,d), underscoring the importance of con-
sidering both metrics for comprehensive evaluation.

Training and evaluating on a single cell type further highlighted 
how the cell types represented in LIVECell vary greatly in terms of 
difficulty. For instance, model performance on SkBr3 cells scored 
quite high (detection and segmentation AP 64–66%) whereas 
SH-SY5Y scored much lower (AP 22–28%) relative to other cell 
types (Fig.  3c and Supplementary Fig.  6). Both models achieved 
similar AP for each of the eight cell types. Notably, both models 
perform better on each individual cell-type test set when trained 
on all cell types compared to training on that single cell type (com-
pare Fig.  3a and c, details in Supplementary Table  7) indicating 
that a cell-type universal model is preferable to a specific one. The 
anchor-free model benefited more from training on all of LIVECell 
compared to the anchor-based model and increased 6.6 AP points 
on average compared to 2.0 (P = 0.01, paired t-test of null hypoth-
esis that the anchor-free increase is less than or equal to that of the 
anchor-based). In the transferability task, models trained on a single 
cell type vary greatly in their ability to generalize to other cell types 
(Fig.  3e,f). For example, models trained on A172, BT-474, SkBr3 
or SK-OV-3 perform relatively well when applied to all other cell 
types, achieving an average transferred AP of 28–36%; however, the 
opposite is observed for models trained on only BV-2 images, where 
we observe an average transferred AP of only 10.1 and 12.0% for 
the anchor-based and anchor-free models, respectively. To quantify 
overall transferability, we designed a transferability index, where a 
perfect score of 0 indicates a model on average performs just as well 
on unseen cell types as the cell type it was trained on with higher 
scores are indicative of less transferability. Using this metric, the 
anchor-based model better generalizes to unseen cell types overall 
than the anchor-free model, achieving a transferability index of 0.98 
compared to 1.21.

For the final task, models trained on LIVECell were vali-
dated using an unseen image set of A172 and A549 cells express-
ing a nuclear restricted red fluorescence protein and nuclei were 
counted using commercially available software. Cells were seeded 
at various densities and grown past full confluence (Fig.  4, A172 
in Supplementary Video  1, A549 in Supplementary Video  2 and 
Supplementary Fig. 7). Predicted cell counts from the anchor-free 
model follow nuclei counts closely over time (Fig. 4a,e) with 98 and 
94% linear correlation for A549 and A172 up to 95% confluency 

(Fig. 4b,f). The anchor-based model performs similarly below 95% 
confluency (linear correlation 99% for A549 and 98% for A172). 
While both models display less reliable object counts in overconflu-
ent images, the accuracy of object counts from the anchor-based 
model drastically deteriorates when the number of cells per image 
surpasses 1,300–1,500 (Fig. 4c,d,g,h). To quantify this, we performed 
iterative goodness-of-fit tests to evaluate the linear relationship of 
fluorescent-based versus model-based object counts to identify an 
object density threshold where each model begins to fail. Here, we 
observe that linearity holds for the anchor-free model at higher 
object counts (up to 2,031 and 1,948 objects per image for A549 
and A172, respectively) compared to the anchor-based model (up 
to 1,403 and 1,328). To confirm accuracy of our fluorescence-based 
cell counts, we quantified rates of unlabeled and multinucleated 
cells and determined that they do not bias the results reported above 
(Supplementary Note).

LIVECell scale experiments. The size of LIVECell permits inves-
tigation into how the number of instances in the training set 
affects segmentation performance. Anchor-free and anchor-based 
models were trained on subsets of the full LIVECell training set, 
evenly selected across cell types and time points, and evaluated 
on the complete LIVECell-wide test set. This revealed that the 
segmentation AP monotonically increased with training set size 
without either model reaching a saturation point (Fig.  5a–c) and 
false-negative ratio decreased monotonically (Fig.  5d–f), suggest-
ing larger training sets can further improve performance both in 
terms of AP and AFNR. Notably, AP increases considerably when 
training on more than 2 and 5% of LIVECell (that is, 24,197 and 
51,488 instances, comparable to the number of annotated objects 
in the largest pertinent datasets so far15,18). Overall, increasing the 
training set size from 2 to 100% of LIVECell results in a 7.7 and 11.5 
point increase in AP for the anchor-based and anchor-free models, 
respectively. It is also noted that while both models achieve similar 
performance when trained on all LIVECell (47.9 and 47.8% AP), 
the anchor-based model performs better on smaller subsets (for 
example, 40.2% AP at 2% of LIVECell, compared to 36.2%).

Assessing transferability between LIVECell and other datas-
ets. Although LIVECell is a highly comprehensive dataset for cell 
segmentation, it does not fully cover all aspects of biology and 
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imaging. Due to equipment availability, all LIVECell images were 
acquired using the same imaging platform and magnification 
in contrast to multi-instrument datasets such as EVICAN15 and 
CellPose18. To demonstrate that LIVECell is a valuable resource for 
light microscopy imaging modalities and magnifications beyond 
our imaging platform, we applied models trained on LIVECell 
to the EVICAN and CellPose evaluation datasets, which includes 
Zernike phase-contrast, fluorescence and brightfield images from 
multiple instruments and multiple magnifications. We found that 
LIVECell-trained models transfer out-of-the-box given appropriate 
digital preprocessing (Supplementary Note). In fact, with no addi-
tional training on data beyond LIVECell, our anchor-free and -based 
models achieve an overall AP of 36.7 and 59.6% on the EVICAN 
easy evaluation dataset, outperforming the previously reported 
EVICAN results of 24.6% (Supplementary Table 4). Furthermore, 

our models achieve similar accuracy to the CellPose baseline 
models on the CellPose evaluation dataset (AP = 24.5 and 26.9%, 
Supplementary Fig.  13). The CellPose results were particularly 
surprising given its dataset mostly comprises fluorescence-based 
images. In contrast, we find that the CellPose generalist model 
struggles to segment certain cell types and many of the highly con-
fluent LIVECell evaluation images (AP = 13.9%, Supplementary 
Note). All of this evidence taken together highlights how such 
a large, high-quality dataset such as LIVECell fills a critical need  
in the field.

Discussion
Achieving accurate object-by-object segmentation is a challenging 
task in any machine learning application and while fully unsuper-
vised approaches are being developed, current CNN-based instance 
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segmentation typically require large, annotated datasets and 
well-designed benchmarks to fairly assess performance and bias. 
LIVECell introduces the largest high-quality resource for label-free 
cell segmentation. By including a wide variety of cell morphologies 
(Fig. 1) and confluence levels (Supplementary Fig. 2), LIVECell can 
facilitate development and assessment of segmentation algorithms 
for biologically relevant cell culture experiments. In contrast to 
other instance segmentation datasets, LIVECell also presents chal-
lenges unique to label-free 2D cell culture image data. First, the aver-
age number of objects per image in LIVECell is 313 (Supplementary 
Fig. 3), which is substantially higher than typical instance segmen-
tation datasets such Microsoft COCO19 (7.8 objects per image) or 
dense datasets such as SKU-110K24 (147.4 objects per image). To 
avoid slow performance speed and heavy memory requirements, an 
optimal CNN model for LIVECell must be appropriately designed 

to handle these high object counts. The two models presented here 
demonstrate linear increases in processing time with object count 
(see details on evaluation in Supplementary Note) and we propose 
that an ideal model design would minimize or bypass this linear 
trend. Furthermore, we found the definitions for small, medium and 
large object size categories in the standard COCO evaluation pro-
tocol19 did not appropriately reflect cell sizes observed in LIVECell 
(Fig.  2) and biased size-based evaluations, which is exacerbated 
by the nonuniform distribution of object sizes within LIVECell 
(Supplementary Fig. 3). Only by adjusting the size category defini-
tions to better reflect the biology present were we able to separately 
evaluate segmentation accuracy on small, medium and large objects 
(Supplementary Table 7).

The anchor-based and anchor-free segmentation models we 
trained with LIVECell show convincing segmentation performance 
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(Fig. 3) on par with their published performance with Microsoft’s 
COCO dataset22,23. Comparing our models to those trained on 
similar datasets, such as EVICAN, we observe substantially higher 
segmentation accuracy, where our models achieve AP scores 
greater than 80% using an IoU threshold of 50% (Supplementary 
Table  7 and Supplementary Figs.  5 and 6) compared to the 61% 
reported in the EVICAN study, highlighting the benefit of train-
ing on a larger-scale dataset15. Certain cell types proved to be par-
ticularly difficult for the segmentation models. For example, the 
accuracy scores for the neuroblastoma cell line SH-SY5Y appears 
notably lower than that of the other cell types. Indeed, neuronal 
cells have a unique morphology compared to the other cell types, 
tending to be highly asymmetric and concave-shaped due to their 
characteristic branching neurites. Asymmetric and concave mor-
phologies have proved challenging for cell segmentation models18 
and put high demands on models to learn long-range depen-
dencies to correctly assign pixels to the correct object instance. 
Convolutions, the cornerstone of CNNs, effectively describe trans-
lation equivariance and locality but struggle to model long-range 
dependencies. Recent model architectures25,26 aim to relieve these 
limitations and may be necessary to accurately segment this type of  
specific morphology.

Beyond direct application of LIVECell-trained models, LIVECell 
also offers a robust dataset for pretraining before fine-tuning on 
small datasets from other instruments due to its size, morpho-
logical diversity and high object density. In particular, evaluating 
the extent to which models trained on LIVECell’s Incucyte HD 
phase-contrast images benefits the analysis of other light micro-
scopic modalities, including brightfield and differential interference 

contrast images, and offers an interesting domain transfer problem 
for future research. In terms of biological limitations, many cell 
types can become overconfluent, continuing to divide as cells pack 
closer and closer together. To explore how our models perform 
in such a scenario, we compared model-predicted cell counts to 
fluorescence-based cell counts on images of cells growing overcon-
fluent until they started to die off (Fig. 4, Supplementary Videos 1 
and 2 and Supplementary Fig. 7). The anchor-free model was able 
to generalize well to overconfluent images without adjustments, 
although it slightly underreported A172 cell counts and showed 
greater variance of A549 cell counts in overconfluent images. On 
the other hand, the anchor-based model struggled when cells 
reached high confluence and began making erratic predictions, 
which is particularly intriguing considering that the anchor-based 
model showed a lower false-negative ratio on the LIVECell segmen-
tation tasks (Fig. 5d–f). Therefore, while both models demonstrate 
similar detection and segmentation performance on LIVECell, they  
differ greatly in their ability to extrapolate to more extreme  
experimental conditions.

This observed performance difference between the anchor-based 
and anchor-free models on highly confluent images may be a result 
of their inherently different detection mechanisms. Anchor-based 
detection means that the localization of objects is based on a set 
predefined anchor boxes, that is rectangles of different sizes and 
aspect ratios. These anchor boxes are used to predict the existence 
of objects at each spatial location in the CNNs intermediate repre-
sentation of the original image. The most confident top few anchor 
boxes over a certain threshold are selected to represent the bounding 
boxes of predicted objects. Then for instance segmentation, the area 
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within each bounding box is segmented to outline the contained 
object as well. Anchor-free detection on the other hand, means that 
the object detection does not depend on a predefined set of anchor 
boxes. Instead, it uses a fully convolutional one-stage (FCOS) object 
detection27 to predict the center points of objects and directly define 
bounding boxes, circumventing the need for additional hyperpa-
rameters. We speculate that these differences may be due to the 
requirement to tune anchor box sizes for the LIVECell segmentation 
benchmarks may cause the model to struggle at detecting cells at even 
higher density. Fine-tuning the anchor boxes for images with higher 
confluence may mitigate the performance difference but could sac-
rifice model accuracy at lower densities. These observations open 
possibilities for future research into the exact cause of the perfor-
mance discrepancy and how different CNN architectures handle  
overconfluent images.

It should be noted that when setting out to annotate LIVECell, 
we intentionally chose not to attempt separation of a large cell mass 
into individual cells. Annotations in such regions where cell bound-
aries are not readily visible (arrows, Supplementary Fig. 2) would 
be arbitrary and risk introduction of bias, which is consistent with 
EVICAN15 that also uses partially annotated images. We do not view 
this as a limitation, but rather believe that this choice will improve 
the applicability of models trained on LIVECell. In most applica-
tions, segmentation quality is more important than detecting every 
possible object if detection is not biased, for example measures of 
morphology statistics or within-cell fluorescence when coupled 
with fluorescent imaging. Poor segmentation will degrade data 
quality, which will propagate through downstream use of segmen-
tation results. Even worse, if segmentation performance is biased, 
this bias may compromise any biological findings relying on seg-
mentation. We note, however, that LIVECell’s partially annotated 
images may introduce a risk that models struggle to train well and 
miss more cells than necessary. However, we do not experience 
any such problems and all models converge well (Supplementary 

Figs.  9 and 10) and the dataset scale experiments shows that not 
only does the precision increase with the increase scale, but the 
false-negative ratio also improves (Fig.  5d–f). Furthermore, both 
models transfer well to other imaging platforms out-of-the-box 
(Supplementary Fig.  12). The size and diversity of LIVECell and 
its rigorous benchmarks allows quantification of this bias for the 
first both across different cell morphologies and different levels  
of confluency.

Two-dimensional light microscopy is an accessible source of  
cellular imaging material that allows high throughput. This modal-
ity enables massive amounts of image material to be collected non-
invasively to represent datasets containing millions of cells, which 
in turn facilitates biological phenomena to be studied with great  
statistical power. To be able to compensate for lack of imaging  
resolution, sophisticated imaging processing pipelines are necessary 
to capture subtle changes in biology. Accurate cell-by-cell segmen-
tations open the possibilities to explore more complex biological 
questions, for example tracking subpopulation response to a treat-
ment condition, investigating migration dynamics in a segmented 
time lapse. With LIVECell to enable CNN-model development for 
2D cell culture images, we envision such models will serve as the 
basis for analyses pipelines that target such exciting and physiologi-
cally relevant topics in biology and medicine.
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Methods
Data collection and annotation. Image acquisition. To ensure the dataset covered 
a wide variety of cell morphologies, a diverse set of eight cell types were chosen 
(A172, BT-474, BV-2, Huh7, MCF7, SH-SY5Y, SkBr3 and SK-OV-3; see summary 
of cell type and morphology in Table 1). All cell lines were purchased from ATCC, 
except Huh7 (CLS cell line services) and BV-2 (Interlab Cell Line Collection) and 
were cultured as per suppliers’ recommendations. Several wells for each cell type 
were seeded in 96-well plates (Corning) and imaged over the course of 3–5 d, 
every 4 h using an Incucyte S3 Live-Cell Analysis system (Sartorius) equipped 
with its standard CMOS camera (Basler acA1920-155um). The Incucyte HD 
phase-contrast imaging algorithm allows visualization of phase delays produced 
by cells without the phase annulus or phase ring found in conventional Zernike 
phase images. Because of this, LIVECell phase-contrast images are characterized 
by less pronounced halo artifacts and more high-frequency content than other 
phase-contrast modalities. Phase-contrast images were acquired using a ×10 
objective from two positions in each well adding up to a total of 1,310 images 
(1,408 × 1,040 pixels corresponding to 1.75 × 1.29 mm2) that were each cropped into 
four equally sized images (704 × 520 pixels corresponding to 0.875 × 0.645 mm2) 
that were then annotated.

Image annotation. Since image annotation is labor-intensive, a managed team 
of professional annotators (CloudFactory) were trained to perform single-cell 
segmentation. To reduce the risk of introducing bias due to annotators gaining 
experience over the course of the task, the dataset was split into eight batches 
balanced over cell types, timestamps and wells using generalized subset designs21 as 
implemented in MODDE v.12.1 (Sartorius Data Analytics). The dataset was then 
uploaded for annotation batch by batch. Before starting any annotation, one well 
per cell type was selected at random to be included in a test dataset for machine 
learning model evaluation. Selecting a complete well, instead of the standard 
practice of selecting images at random, ensure that the training and test set are 
physically separate, greatly reducing the risk of data leakage by, for example, the 
plate texture.

All cells in all images that could be unambiguously identified by an experienced 
cell biologist were then annotated by outlining them with polygons using a 
commercially available, cloud-based, annotation software (V7Labs Darwin). 
To train the annotation team, the annotation managers were first trained on a 
one-to-one basis until they were able to annotate the images with sufficient quality. 
To scale up, the annotation managers then trained the remaining team members.

Quality assurance. Due to the low contrast and high object density making 
annotation challenging, two levels of quality assurance were used to minimize the 
risk of introducing label noise. The first level was performed by the annotation 
managers and second round by an experienced cell biologist. During quality 
assurance, each image was inspected and any images with faulty annotations were 
sent back to the annotators along with feedback. Examples of faulty annotations 
include cells that were not annotated but should have been, cells outlined with a 
too course polygon leading to a jagged segmentation mask, large cells that had 
been split into multiple cells, debris annotated as cells and so on. An image sent 
back to the annotator was revised before sent for new quality assurance. If the 
annotation manager approved the image, it was sent to a cell biologist for final 
approval. Images passing both rounds of approval were included in LIVECell. To 
assure that the annotation managers assessments stayed consistent, there were 
frequent follow-up calls where the cell biologist provided feedback on difficult 
cases directly to the annotation managers.

Fluorescence-based cell counts. To enable validation of cell detection by 
LIVECell-trained models in biologically relevant cell culture conditions, a separate 
set of A172 and A549 cells expressing a nuclear restricted red fluorescence 
protein were seeded at various densities and cultured for 5 d. Phase-contrast and 
red fluorescent images were captured at ×10 magnification using an Incucyte 
S3 Live-Cell Analysis system. Fluorescence-based cell counts were measured by 
detecting and segmenting the fluorescently labeled nuclei using the commercially 
available Incucyte Basic Analyzer. These counts were then used to evaluate the cell 
counts obtained label-free using segmentation models trained on LIVECell.

Data exploration. Multivariate data analysis of cell morphology. To measure 
the morphology of cells, a set of 17 metrics was chosen and measured for each 
individual cell in LIVECell. These metrics were chosen to represent different cell 
features, including size (area, perimeter, Feret’s diameter), phase-contrast intensity 
(mean; minimum; maximum; P5, fifth percentile; P95, 95th percentile) and 
intensity distribution (skewness, kurtosis, normalized weighted centroid (NWC)), 
texture (standard deviation of intensity (STD)), and shape (eccentricity, roundness, 
circularity, solidity and aspect ratio (AR)). Image annotations were used to create 
a region of interest for each cell using OpenCV v.4.4.0.46, and standard metric 
calculations were run using scikit-image v.0.17.2 or SciPy v.1.5.2.

To provide an overview of the cell diversity represented by LIVECell we 
applied multivariate data analysis, specifically PCA. The morphology metrics 
were preprocessed based on their distributions over all cells in LIVECell. The 
image-wise morphology metric averages were then calculated by summing the 

metrics over all cells in each image and dividing by the number of cells per image. 
The image-wise averages were then standard-scaled, that is, mean-centered to 
zero and scaled to unit-variance. Last, a two-component PCA-model was fitted 
and visualized using scatterplots of PCA scores over image-wise average and 
PCA loading scatterplots showing the morphology metrics influence on the 
PCA-component directions. PCA was calculated using Python libraries scikit-learn 
v.0.22.2 and visualized using matplotlib v.3.1.1.

Training segmentation models. Instance segmentation model architectures. 
Two state-of-the-art CNN-based instance segmentation models were trained 
on LIVECell to evaluate the benchmark tasks’ difficulty. The two models used 
inherently different object detection mechanisms: anchor-based and anchor-free. 
The anchor-based model was an adapted version of Cascade Mask RCNN28 using 
a ResNest-200 backbone23,29. The anchor-free model was based on CenterMask22,30 
an anchor-free one-stage architecture with a VoVNet2-FPN backbone using FCOS 
detection27. Nine models of each architecture were trained on LIVECell, one model 
on the whole dataset (LIVECell-wide train and evaluate benchmark) and one for 
each of the eight cell types (single cell-type train and evaluate benchmark).

Model training. All training used transfer learning by starting with weights 
pretrained on the MS-COCO 2017 dataset19 that were then fine-tuned on 
LIVECell. Training used a stochastic gradient descent-based solver, a batch size of 
16 images per iteration (distributed to two per graphical processing unit (GPU)), 
a momentum of 0.9, a linear learning rate warmup with warmup factor of 0.001 
and other training parameters listed in. All models were trained on a NVIDIA 
DGX-1 server hosting eight NVIDIA Tesla V100 GPUs with 32 Gb of GPU RAM 
each, dual 20-Core 2.2 GHz Intel Xeon CPUs and 512 Gb system RAM. The 
anchor-based model was implemented using the Python programming language 
v.3.6.10 (Python Software Foundation, https://www.python.org/), the deep learning 
framework PyTorch31 v.1.5.0 and the object detection library Detectron2  
(ref. 32) v.2.1. The anchor-free model was implemented using Python programming 
language v.3.7.7, PyTorch v.1.5.0 and Detectron2 v.0.3.

All training was run for a predefined set of iterations and the loss on a 
validation set, separate from the training and test sets, were monitored to assess 
model over- and under-fitting. Model checkpoints were saved and used for 
evaluation based on which had the lowest validation loss (Supplementary Figs. 9 
and 10) on the rationale that the lowest validation loss represents a good balance 
between an under- and over-fitted model. For the anchor-free model trained on 
SH-SY5Y the warmup iterations were increased from the default 1,000 to 5,000 
as the default parameters resulted in unstable gradients due to the learning rate 
increasing too quickly. Because the model did not properly converge in 10,000 
iterations, we extended that training to 20,000 iterations in total.

For normalization, pixel intensity values were centered around zero by 
subtracting by the global average pixel value for the dataset (128), and then 
divided by the global standard deviation (11.58). To reduce the risk of overfitting, 
all training used multi-scale data augmentation meaning that image sizes were 
randomly changed from the original 520 × 704 pixels to a size with the same ratios, 
but shortest side set to one of (440, 480, 520, 580, 620) pixels.

During early experiments, the anchor-based model struggled to detect 
small cells (for example, BV-2, Fig. 2c) using parameters from the original 
implementation23. To better segment these cells, the predefined anchor box sizes 
were reduced to (4, 9, 17, 31, 64, 127 pixels) compared to standard (32, 64, 128, 
256, 512 pixels) and anchor generator aspect ratios are changed to (0.25, 0.5, 1, 2, 4) 
compared to the standard (0.5, 1, 2 pixels).

Benchmarking. Segmentation benchmarks. To evaluate models’ performance on 
all benchmarks, a slightly modified version of the COCO evaluation protocol19,33 
was used. The COCO evaluation protocol is widely used in machine learning to 
evaluate performance of how well objects are detected and segmented compared 
to ground truth annotations, and report overall AP of detection at a certain degree 
of overlap between the prediction and ground truth. This is calculated in several 
steps. First, the degree of overlap between each prediction and its closest ground 
truth object is quantified using the IoU given by:

IoU =

Pred ∩ Target
Pred ∪ Target

If the IoU between the prediction and the closest ground truth target is larger 
than a certain threshold, the ground truth target is deemed as correctly detected. 
For all ground truth objects, the detection performance is then quantified using the 
precision and recall metrics given by:

Precision =

TP
TP + FP

Recall = TP
TP + FN

where TP is the number of true positives, FP is number of false positives and FN 
is number of false negatives. The recall is monotonically increasing with the IoU 

Nature Methods | www.nature.com/naturemethods



ResourceNATurE METHoDs

threshold but the precision, p, is recalculated to be monotonically decreasing by 
interpolating the precision at multiple recall levels by:

pinterp (r) = max
r′≥r

p(r′)

where p(r′) is the precision given a recall value r, r’ is each recall value greater or 
equal to r at the IoU threshold. The AP at the IoU threshold, APIoU, is then given by 
the area under the curve when plotting the precision against recall for the instance 
predictions given at the IoU threshold given by:

APIoU =

n−1∑

i=1
(ri+1 − ri)pinterp(ri+1)

where n is the number of instance predictions. To evaluate LIVECell segmentation 
benchmarks, the COCO-standard overall AP is used, meaning that the average 
AP over IoU thresholds from 0.5 to 0.95 with a step size of 0.05 is used instead of a 
single IoU threshold. In mathematical notation:

AP =

AP0.50 + AP0.55 + … + AP0.95

10

The overall AP is far more conservative than AP0.50 commonly used in 
literature15, which allows for 50% segmentation mismatch to classify a  
detection as correct.

To allow fine-grained evaluation of performance depending on object size, AP 
is also calculated separately for objects divided into different size categories. To 
better reflect sizes of cells, custom threshold sizes for small, medium and large cells 
are used (see distributions and thresholds in Fig. 2). Namely, small cells are set as 
smaller than 320 µm2 (corresponding to 500 pixels), medium cells between 320 and 
970 µm2 (correspond to 1,500 pixels) and subsequently large cells as larger than 
970 µm2. Because there are so many instances per image in LIVECell,  
the maximum detections per image was increased to 3,000 compared to the 
standard 100.

Precision and AP quantify how correct detected instances are but provide 
little insight into the accuracy of the number of detected instances. We use 
the false-negative ratio (FNR) to quantify detection performance, where the 
false-negative ratio at certain IoU threshold is given by:

FNRIoU = 1 − RecallIoU where RecallIoU is the recall of the predictions at 
the IoU threshold. Analogous to AP, we calculate the AFNR over multiple IoU 
thresholds as:

AFNR =

FNR0.50 + FNR0.55 + … + FNR0.95

10

to quantify the overall detection performance.

Cell-type generalization benchmark. The single cell-type model transferability 
benchmark enables quantification of how well models can generalize to unseen cell 
types, by training a single LIVECell cell type and evaluate on the remaining ones. 
We report the generalization performance by comparing the model performance on 
the cell type it was trained on to its performance on the other cell types. Since cell 
types vary in general difficulty, the log-transformed ratio is used for comparison 
instead of the absolute performance differences. For each cell type, the relative 
generalization performance on one cell type is given by the log2-transformed ratio 
of the training set cell type compared to evaluation cell type. In mathematical 
notation, the generalization performance of model trained on cell type A evaluated 
on cell type B is given by: rA,B = log2

APB
APA  where APA denotes the AP for cell type A. 

The transferability index is then given by the negative mean log2-ratio:

transferability index = −
1

n(n − 1)
∑

c1∈C

∑

c2∈C,c1 ̸=c2

rc1 ,c2

where n is the number of cell types and C the set of available cell types. The 
rationale for negating the mean is that in most cases the transferred performance is 
lower than for the cell type used for training, resulting in negative score. A positive 
score, where lower is closer in performance, is arguably more intuitive to interpret 
than a negative unbounded number. The cell-type generalization benchmark was 
implemented in Python v.3.6.7 and Pandas v.1.1.5.

Validation against fluorescence-based cell counts evaluation. To quantify 
how well models can extrapolate in terms of cell counting compared to 
fluorescence-based cell counts, we use two metrics based on linear regression. First, 
we test how much variance in fluorescence-based cell counts is explained by the 
model cell counts in images with fewer than 1,600 objects, roughly corresponding 
to 95% confluence and the confluency level covered by LIVECell. In mathematical 
notation, the variance explained, R2, is given by:

R2
= 1 −

SSresidual
SStotal

Given fluorescent-based cell counts yfluorescence and model-based cell counts 
ymodel, the residual sum of squares, SS, of images  is given by:

SSresidual =
∑

i
(yfluorescence,i − ymodel,i)

2

And given the average fluorescent cell count ŷfluorescent, the total sum of squares 
is given by:

SStotal =
∑

i
(yfluorescence,i − ŷfluorescent)2

Second, we quantify for how many objects the models are able to sustain the 
linear relationship by testing goodness-of fit of linear regression at increasing 
fluorescent-based counts of objects. The goodness-of fit-test fails when a nonlinear 
regression model explains a statistically significantly larger degree of the variation 
in fluorescent-based cell counts compared to the linear one. For a given maximum 
fluorescence-based count of objects, we fit a linear regression model of the 
fluorescent-based counts from all images with less than or equal to the maximum 
number of cells using the model-based counts as regressor. Then we fit a nonlinear 
model using the same response and regressor, more specifically K-nearest neighbor 
regression using five neighbors (as implemented in Scikit-learn v.0.24.1). To test 
goodness-of-fit of the linear model, we test the null hypothesis that the residuals 
of the linear and the nonlinear model have equal variances according to Levene’s 
test34 (Scipy v.1.3.1). The test is then repeated while incrementing the maximum 
fluorescence-based count per image until the null hypothesis is rejected using 
P = 10−5 as threshold. The threshold is selected to correspond to when the model 
predictions break down qualitatively. The maximum number of objects where the 
null hypothesis is first rejected is then reported as the limit of the model’s linear 
extrapolation.

Dataset size experiments. To further explore the impact of dataset size on model 
performance the dataset was divided into subsets corresponding to 2, 4, 5, 25, 50 
and 100% of the total dataset size. The subsets were created by taking every nth 
image from the training dataset n ∈ {50, 25, 20, 4, 2, 1}. To compare to existing 
datasets, 2% of LIVECell roughly corresponds to the number of instances in 
EVICAN15 and 5% to CellPose18. Both anchor-based and anchor-free models were 
trained on these subsets and then evaluated against the full LIVECell test dataset. 
For each subset and model, models were checkpointed during training and  
the checkpoints where validation loss stopped decreasing was selected to  
prevent overfitting.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Table 1 | Overview of cell lines used to construct the LIVECell dataset

Cell type Species Type Wells Time length Why chosen

A172 Human Glioblastoma 4 3 d General adherent cell morphology. Over grow each other at higher 
densities.

BT-474 Human Breast cancer 4 5 d Grow in rafts. Challenging to locate cell boundaries clearly.
BV-2 Mouse Microglia 4 3 d Small spherical morphology. Homogeneous population.
Huh7 Human Hepatocellular 3 4 d Low contrast cells. Challenging to locate cell boundaries clearly.
MCF7 Human Breast cancer 4 3 d, 16 h Grow in rafts. Challenging to locate cell boundaries clearly.
SH-SY5Y Human Neuroblastoma 4 3 d, 12 h Neuronal morphology with long protrusions. Overlapping cells.
SkBr3 Human Ovarian cancer 4 3 d, 12 h Low contrast cells. Heterogeneous morphologies.

SK-OV-3 Human Breast cancer 4 3 d Heterogeneous morphology.
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Data availability
The LIVECell dataset, trained models and config files to apply the models have 
been deposited at https://sartorius-research.github.io/LIVECell/ and https://doi.
org/10.6084/m9.figshare.14931555.

Code availability
All software source code is available at https://github.com/sartorius-research/
LIVECell.
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Mycoplasma contamination The commercial vendor supply the cell lines with mycoplasma status, which were all negative. We did not do any further 
testing but keep the cell lines in cultures for less than 3 months at a time to avoid any issues.

Commonly misidentified lines
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